
Introduction to PICK and HOSTACCESS

Within the PICK community there are many host applications that have been developed to run on text based terminals. These are
not PC-based applications, but are designed, built and running on tens of thousands of hosts everywhere.

HOSTACCESS is the leading terminal emulator for PICK systems, covering more emulations and networks than any other terminal
emulator. With HOSTACCESS, you can keep your reliable, efficient code, whilst your user community moves onto PC systems.

More than this, HOSTACCESS provides a wide range of features to allow you to develop a full Graphical User Interface (GUI) to
your PICK host applications. This GUI-izing process is unique to HOSTACCESS.

Click here        for information on installing the host programs.

If you are new to using PICK with HOSTACCESS, click here        for some advice on using PICK to create a GUI Interface to your
legacy applications.
The following topics are covered:

File transfer.
Applications Programs.
Additional TCL Utilities.
Programmer ¢s TOOLKiT.
GUI TOOLKiT.
HOSTACCESS Control Files.

Installing Host Programs

The following topics describe how to install HOSTACCESS ¢s host utilities on PICK systems.

Once you have installed all of the host AiF and file transfer routines, you can type TERMITE.DEMO at TCL to review a
demonstration of some of the facilities available.

The host programs and subroutines available are documented in the main body of this guide.

HOSTACCESS ¢s host utilities are available for and supported on all PICK systems, including UniData, UniVerse and all other
Unix/VMS PICK implementations.

Uploading the PICK Programs.
Updating PICK Accounts.
Porting between different PICK Systems.

Uploading the PICK Programs

You should install the PICK programs in an Account called HOST.X (X is the version number). You should use this Account as the
master HOSTACCESS Utilities Account and you should back it up on a regular basis. Other Accounts on your PICK system that
require the HOSTACCESS utilities may be updated.

Click here        for details on updating PICK accounts.

The PICK programs are provided on a separate disk - labeled ¢HOST INSTALLATION DISK 1 ¢. There may be more than one Host
Programs Disk and these will be numbered as appropriate.

The elapsed time for a complete upload of all of the PICK host routines will vary depending upon the speed of the host system, the
PC and the communications link. Experience has shown that this time will range from between 1 minute on a powerful host to over
45 minutes on a slow host.

Reminder: Prime INFORMATION and some UniVerse (Prime/Ideal flavors) users should read VOC for MD wherever MD is
mentioned in our documentation.

Prerequisites.
Uploading procedure.
Uploading Unidata Programs on VMS or UNIX.

Prerequisites

It is assumed that you are running the correct version of HOSTACCESS on your PC and have established a connection with the
host PICK system. You must be using a PC with access to at least 1Mb of free hard disk space.

Before starting, please ensure that the emulation you are using in HOSTACCESS corresponds to the terminal type set on the host
machine. If you are using a serial connection, you should also ensure that flow control is set correctly both within HOSTACCESS
and on the host.

You are recommended to run this procedure from a PC directly connected to the Host PICK system, i.e. not attached by modems or
a wide area network.

Uploading Procedure

The following instructions are for all PICK systems except UniData. Click here        for instructions for UniData.

1. On the host PICK system, create an Account called HOSTACCESS.6.2
with at least SYS2 privileges. LOGTO this Account.

UniVerse users: ensure that the PTERM -CASE NOINVERT verb has
been executed in this account so that no case conversions take place.

General Automation (C-ITOH) users: ensure that the "CONTROL-
CHARS ON" verb has been executed in this account so that control
characters will be accepted on input.

2. Create a file called PIX.PROGS.F as follows :

CREATE-FILE PIX.PROGS.F 1,1 97,1

Prime INFORMATION and UniVerse users should create this as a type
1 file as follows:

CREATE.FILE PIX.PROGS.F 1

3. Ensure that this file is suitable for use as a PICK/BASIC programs file. In
other words, modify the MD entry to reflect this as dictated by your PICK
system.

For example, on C-ITOH PICK use :SWC MD PIX.PROGS.F.

On generic PICK carefully EDit the MD entry and change attribute 1 from
¢D ¢ to ¢DC ¢

McDonnell Douglas users need make no changes. Prime INFORMATION
and UniVerse users will not need to make any such changes, as this file
is already a type 1 file.

4. Insert the disk labeled ¢HOST INSTALLATION DISK 1 ¢ in the PC ¢s
floppy disk drive

5. Invoke HOSTACCESS ¢s File Transfer facility by selecting the
appropriate button. This displays install.key - the name of the Keyfile
used to control the installation. Select the key protocol

6. Press <ENTER> to proceed with the upload (or press <ESCAPE> to exit).
After some small PICK programs are transferred and compiled, you see a
menu of PICK machine types.

7. Select the entry that corresponds to your PICK machine and press
<ENTER>. You will then be prompted for the drive letter from which the
host programs will be uploaded.

8. Enter the letter of the drive containing the host installation disk and then
press <ENTER>. The next message asks you to load HOST
INSTALLATION DISK 1. If you have not already done this, do so now and
press <ENTER>.

The program PIX.DOS.PICK will now be uploaded and compiled. The
PIX.INSTALL.HOST program is then uploaded and compiled. When this
is complete you will be presented with a controlling menu for the host
programs upload.

9. Select the installation option and then press <ENTER>.

The upload procedure is completely automatic from this point onwards.

Automatic Uploading

After following the instructions in the previous section, the following automatic uploading process occurs. The PICK programs are
uploaded in the host PICK file PIX.PROGS.F and these programs are also compiled and catalogued. The appropriate MD (VOC)
entries are created in the    HOSTACCESS.6.0 account to run the appropriate TCL commands.

Once the host programs have been installed you may select the "Update another Account" option. This moves relevant TCL
pointers, File pointers and Catalogued program entries into the MD (or VOC) of the target account. The target account must be a
valid "LOGTO" account name.

You may exit this program by selecting the "Exit" option. You may re-run it any time by entering PIX.INSTALL.HOST from the TCL
(PERFORM) command line in the " HOSTACCESS.6.2" account.

If for some reason the upload should fail, or some items not be transferred, you may re-start the installation procedure by running
PIX.INSTALL.HOST and choosing the appropriate option from the menu displayed. However, if you require programs already
loaded to be updated, existing items in the file PIX.PROGS.F must be deleted before running PIX.INSTALL.HOST.

Note: There is no need to repeat the file upload procedure.

Uploading UniData Programs on VMS or UNIX

To install HOSTACCESS ¢s host programs on UniData on either VMS or UNIX, follow the steps below.

1. On the host, create a UniData account into which you will install
HOSTACCESS ¢s host programs. Name this account as appropriate.
e.g. hostacc6. We recommend that you follow Unidata ¢s
instructions for this. For UNIX, these may be similar to those below:

cd /usr
mkdir hostacc6
cd hostacc6
newacct

(and answer the Unidata prompts as appropriate)
udt
(to invoke Unidata)
Make sure that the environment variables for Unidata have been set.

2. Login to this account using HOSTACCESS and create the programs
file needed for the host programs with the following commands
(please note the underscores in the filename, and substitute
/usr/hostacc6 with the path appropriate to your system):

Execute the verb BASICTYPE ¢P ¢ and modify the Line Editor verb
as follows:
AE VOC ED
G2
R/ED/AE
FI
CREATE.FILE DIR PIX_PROGS_F

SETFILE /usr/thostacc6/PIX_PROGS_F PIX.PROGS.F
OVERWRITING

Note: VMS users only should use SETFILE as follows:

SETFILE UDT_HOME: [HOSTACC6.PIX.PROGS.F] PIX.PROGS.F
OVERWRITING

If control characters are turned off, remember to activate the
CONTROLCHARS ON verb.

3. Start HOSTACCESS ¢s File Transfer facility. Change the default
keyfile name from INSTALL.KEY to INSTALL.UNI and press
<ENTER>. The host installation bootstrap programs will be uploaded.

4. Choose UNIDATA as the host machine. You will be prompted for the
DOS drive letter for the host programs disk. Enter A or B as
appropriate.

You will then be prompted for the full UNIX or VMS path to this account. Enter the appropriate path, in the correct case, such as
/usr/hostacc6 (on UNIX), or UDT_HOME : [HOSTACC6] (on VMS). The PIX_INSTALL_HOST routine will be uploaded and
compiled.

When this is complete you will be presented with a controlling menu for the host programs upload. Once you have selected the
appropriate option, the upload procedure is completely automatic.

 Hints and Guidelines

Hints and Guidelines

Asynchronous users should ensure that flow control is on at both ends, i.e. within HOSTACCESS (both in and out) and at the host.

Host Prime users should note the following:

INFORMATION strips the 8th bit on any I/O "data". Most users will set HOSTACCESS ¢s Port configuration for Serial sessions as
below :

Data bits7
ParityMark
Stop bits1

Most INFORMATION applications will need the Echo set to Delay and will already have done this. If Echo is not set to Delay the
Prime host will intersperse the echo of input data with output data from the host. You may set this parameter as below :

PTERM -ECHO DELAY

You may need to assign "reverse" flow-control for the host port. This controls input (to the host) flow control. PRIMOS rev 19.4 and
later should support the SET_ASYNC command

SET_ASYNC -LINE nn -REV_XOFF

where nn is the Port Number.

If you are unsure about using this command, please consult your Prime systems administrator.

Please also remember to ensure that the "Kill" character is suitably configured to, say, Control X. If the kill character is left as the
Prime default, a question mark, one of the initial file transfers will fail.

Updating PICK Accounts

The master HOSTACCESS account installed and loaded is ready for use with all the host utilities uploaded. To make these host
utilities available in other PICK Accounts simply run the program PIX.INSTALL.HOST and choose the Update Account option. This
prompts you for the name of the PICK account to be updated and transfers the appropriate MD (VOC) entries for the host utilities
and files. The target account must be a valid LOGTO account.

Prime INFORMATION, UniVerse, and Unidata users should enter the appropriate path to the target account, according to each
system ¢s operating conventions.

If MD entries for host utilities commands (such as EASY.ACCESS) already exist in the target account ¢s MD, the original entries are
duplicated into items suffixed ".ORIGINAL" in the MD file.

All the other MD entries required are prefixed by PIX. for subroutines and are written directly into the target MD file.

Entries for files are created as Q-pointers, prefixed with PIX. and suffixed with .F.

Porting Between Different PICK Systems

If you need to use the HOSTACCESS host utilities on another PICK system you may use PICK ¢s own backup and restore facilities
as long as the other PICK system is the same type as the original one.

If you need these utilities on another PICK system with a different flavour of PICK, you must follow the install procedure described in
the section headed PICK Installation, above. The reason for this is that the installation process decides which of the various
programs to upload depending upon the host system ¢s PICK flavour.

The GUI TOOLKiT

Today, users are expecting increasing sophistication from their applications, in terms of a true Graphical User Interface, with dialog
boxes, menus and windows.

We have developed a comprehensive set of facilities to allow you to enhance and develop host applications using the full GUI
effects normally only available to PC application developers. Using these facilities with HOSTACCESS, you have access to a wide
range of GUI effects. We call these facilities the GUI TOOLKiT.

Whether you want to simply put a red box on the screen or provide a full Graphical User Interface for the end users of your
application, HOSTACCESS provides all of the necessary links within the Programmer ¢ s TOOLKiT and GUI TOOLKiT.

GUI-izing Applications

You can start enhancing applications immediately, dramatically improving the look and feel of host applications. A major advantage
is the ¢phased ¢ enhancement approach of HOSTACCESS. You can add any or all of the following to your applications:
· DDE links.
· Automatic data transfer.
· Color, graphics and pictures.
· Windows.
· Toolbars and toolboxes.
· Menus and commands
· List boxes and combo boxes.
· Radio buttons and check boxes.
· Sculpted “3-D” dialog boxes.
· Edit boxes

Available subroutines.
If you are new to using PICK with HOSTACCESS, click here        for some advice on using PICK to create a GUI Interface to your
legacy applications.

Creating a GUI Interface to your legacy applications

There are a number of approaches to creating a GUI interface to your legacy applications, the approach you take should be
determined by what you are trying to achieve and what application you have to start off with.

You may wish to give your menus a GUI look and feel and let your application screens run as normal in shades of gray with sculpted
boxes surrounding the input fields or you may wish to add more options like Windows Edit Controls and buttons.

The following topics take you step by step through the necessary tasks to create a GUI interface using simple examples.

1. Windows controls.

2. Events.

3. Colours.

4. Capturing events.

5. Reading controls.

6. Unloading controls.

Windows controls

A control is a Windows object that can be placed on to the terminal screen at a given x & y coordinate. It will be sized to terminal
character sizes, i.e. number of characters long by number of rows deep. This control will be placed onto the screen in the given
coordinates using the default configuration parameters, that is the colour will be white text on black background.

For example we could load a text button on the screen at:

Row 23, Col. 10, 9 Chars wide by 2 rows deep:
001 CALL PIX.GUI.LOAD.TEXTBUTTON("","BUTTON1,TEXTBUTTON,23,10,9,2,&Help","")

From the example above you will notice that the string passed to the subroutine include the coordinates and dimensions of the
button but it also include a unique name (CONTROL.ID) and a label. The label also has an '&' in front of the letter 'H' . This will
highlight the 'H' of Help underlined. This will become a hot key which means that keying Alt H is the same as clicking on the button.

If you click this button, nothing will happen. This is because for a control to return actions back to the host, events must be assigned
to them first.

Events

Events

An event is an action that you must assign to a control in order for an action to be returned to the host. For example:
001 CALL PIX.GUI.LOAD.TEXTBUTTON("","BUTTON1,TEXTBUTTON,23,10,9,2,&Help","")

loads a text button tontrol. You will probably want most buttons to have an event of clicked assigned against them. This means that if
the user clicks on the button, the button will send a response to the host to say that it has been clicked.

You can assign multiple events to controls, for example, you might want an edit control to have enter and tab events assigned
against it so that if the user tabs out of the control or hits enter a response is sent to the host.

On the other hand you may not wish to assign any events to a control, for example if a multi line scrolling edit box is on the screen
for users to enter comments like a notepad, you (the Host) do not need to be informed if they tab out or hit enter. You will only need
to know if they click on the File button when you can then read the contents of the control.

001 CALL PIX.GUI.LOAD.TEXTBUTTON("","BUTTON1,TEXTBUTTON,23,18,9,2,&Help","")
002 CALL PIX.GUI.LOAD.EDIT("","EDIT1,EDIT,18,10,20,1","")
003 CALL PIX.GUI.CONTROL.EVENT("","BUTTON1,EVENT,ON,CLICKED","")
004 CALL PIX.GUI.CONTROL.EVENT("","EDIT1,EVENT,ON,ENTER,TAB","")

If you run the example above you will probably not see the edit control as it is white on black and the standard default screen in a
black background. You will need to set the colours of the screen and the controls to see it and get the best effect.

Colours.

Colours

There are two types of colours that you should be aware of. First, there is the background colour of the session. i.e. the normal test
colour. This can be set via the Attribute mapping from the HOSTACCESS Configure Menu but for application control you will want to
set it from your application. Confusion in colours can arise from the old style ASCII colours of DOS and the new Windows' Palette
colours. You set the background colours using the old ASCII style. However controls use the Windows Palette e.g. the colour GREY
in ASCII is the same as LIGHTGREY for the Windows Pallete.

001 CALL PIX.SET.COLOUR("BLACK,GREY","D")
002 CRT @(-1):
003 CALL PIX.GUI.LOAD.COLOUR("","ALLCONTROLS,COLOUR,BLACK,LIGHTGREY","")
004 CALL PIX.GUI.LOAD.TEXTBUTTON("","BUTTON1,TEXTBUTTON,23,18,9,2,&Help","")
005 CALL PIX.GUI.LOAD.EDIT("","EDIT1,EDIT,18,10,20,1","")
006 CALL PIX.GUI.LOAD.COLOUR("","EDIT1,COLOUR,BLACK,WHITE","")
007 CALL PIX.GUI.CONTROL.EVENT("","BUTTON1,EVENT,ON,CLICKED","")
008 CALL PIX.GUI.CONTROL.EVENT("","EDIT1,EVENT,ON,ENTER,TAB","")

This example ets the default background colours to black on grey and clears the screen, sets the default colour of all controls that
follow to black on light grey, until the default is changed, loads the text button and the edit control and changes the colour of the edit
control to black on white. Note the default colour is still black on light grey.

Run the above program and click on the button or tab/enter from the edit control, you will see what appears to be garbage on the
screen.This 'garbage' is events which are being sent back to the host.

 Capturing events.

Capturing Events

You need to capture events returned to the host so that your program can perform actions based on what the user is doing. The
events returned to the host are sent back in two line inputs. The first input is the event identifier and the second event is the action.

The Basic code below will return to your host the three variables of

CONTROL.ID Set to the unique Control ID of the control that was
actioned.

EVENT Set to the type of action the user did (if event reporting was
enabled for that control).

PARAMS Not discussed here.
CALL PIX.GUI.GET.EVENT("",CONTROL.ID,EVENT,PARAMS,"")
 BEGIN CASE
 CASE CONTROL.ID = "BUTTON1"
 PRINT CONTROL.ID : "Was " : EVENT
 CASE CONTROL.ID = "EDIT1"
 PRINT CONTROL.ID : "Was " : EVENT
 CASE 1
 NULL
 END CASE

This logic is fine if you want to perform one action in a program and exit, but usually you will want to loop around waiting for the user
to click on the File (OK) or Exit (Cancel) buttons. This leads us into event driven programming as in the following example:

 CALL PIX.SET.COLOUR("BLACK,GREY","D")
 CRT @(-1):
 CALL PIX.GUI.LOAD.COLOUR("","ALLCONTROLS,COLOUR,BLACK,LIGHTGREY","")
 CALL PIX.GUI.LOAD.TEXTBUTTON("","BUTTON1,TEXTBUTTON,23,18,9,2,&Help","")
 CALL PIX.GUI.LOAD.TEXTBUTTON("","EXIT,TEXTBUTTON,23,22,9,2,&Cancel","")
 CALL PIX.GUI.LOAD.EDIT(EDIT1,EDIT,18,10,20,1","")
 CALL PIX.GUI.LOAD.COLOUR("","EDIT1,COLOUR,BLACK,WHITE","")
 CALL PIX.GUI.CONTROL.EVENT("","BUTTON1,EVENT,ON,CLICKED","")
 CALL PIX.GUI.CONTROL.EVENT("","EXIT,EVENT,ON,CLICKED","")
 CALL PIX.GUI.CONTROL.EVENT("","EDIT1,EVENT,ON,ENTER,TAB","")
 LOOP
 CALL PIX.GUI.GET.EVENT("",CONTROL.ID,EVENT,PARAMS,"")
 UNTIL CONTROL.ID = "EXIT" DO
 BEGIN CASE
 CASE CONTROL.ID = "BUTTON1"
 PRINT CONTROL.ID : "Was " : EVENT
 CASE CONTROL.ID = "EDIT1"
 PRINT CONTROL.ID : "Was " : EVENT
 CASE 1
 NULL
 END CASE
 REPEAT

The above example shows a method for validating events as they occur.    If you want to do some processing before you enter a
data field then you will need to use FOCUS Event. Please note that FOCUS means 'left' focus, not 'gained'. This means if you have
one control with FOCUS then every control must have the FOCUS control, even those that do not require an event.

Reading controls.

Reading controls

The next step is retrieving the data that the user has typed in. For example, we want to read the edit controls, radio buttons, list
boxes, check boxes and grids. You can even load your own VBX controls and read and write to them also.

CALL PIX.GUI.CONTROL.READ.VALUE("","EDIT1,EDIT",VALUE,"")

The value of the edit control EDIT1 has been read and the contents returned into the variable VALUE. The only thing you must be
careful of is the second parameter passed to this subroutine, eg. 'EDIT1,EDIT' .Because of the nature of the code behind the
PIX.GUI.READ.VALUE program, you need to pass the name of the control and the type of control, ie. EDIT1 is the name of the
control and it is an EDIT type control. You would never want to read the contents of a button as these are actions only.

Unloading controls.

Unloading Controls

The next step is removing controls from the screen (unloading controls).

That could not be simpler. Remember, if a control is LOADed then to remove a control you must UNLOAD it.
024 CALL PIX.GUI.CONTROL.UNLOAD(“”,”BUTTON1”,””)
025 CALL PIX.GUI.CONTROL.UNLOAD(“”,”EXIT”,””)
026 CALL PIX.GUI.CONTROL.UNLOAD(“”,”EDIT1”,””)

It is simpler to group the controls together before deleting them. This can be done in two ways:

You can define a Base Control Group before you start loading your control.
000 CALL PIX.GUI.LOAD.DEFGROUP(“”,”TESTAPP,DEFGROUP”,””)

Or after the controls are loaded, create a group of controls and delete the GROUP Control.
024 CALL PIX.GUI.LOAD.GROUP(“”,”TESTAPP,GROUP,BUTTON1,EXIT,EDIT1”,””)
025 CALL PIX.GUI.CONTROL.UNLOAD(“”,”TESTAPP”,””)

Related topics:
Secondary Windows.
PUSH Slots
POP Slots.
Controls.
Pushbuttons.
Images.

File Transfer

The following topics describe the PICK File Transfer commands that are called from the TCL (or PERFORM) command line.

All PICK file transfer commands:
· Can be used from the TCL command line.
· Take command line options and prompt for missing parameters if appropriate.
· Can be used by applications software as PICK/BASIC subroutine calls.
All the applications and utility programs provided are invoked from commands which are processed by one program, PIX.DRIVER.
This evaluates what the user typed from the command line, then converts the command line into the required subroutine
parameters, then calls the appropriate subroutine. The Host Installation procedure loads the MD (or VOC) file with the appropriate
commands for these programs and utilities.

The File Transfer verbs are documented in a standard format for ease of use and quick reference.

The following areas are covered:

File transfer conventions.
File transfer overview.
Transferring from DOS to PICK.
Transferring from PICK to DOS.
Dumping PICK Items to DOS.
Uploading PICK files from DOS.
Inter-Session File Transfer.

File Transfer conventions

Mandatory options for a File Transfer command are shown in upper-case text after the command and in the position in which they
should be specified.

Optional parameters for a File Services verb are shown within { } braces and are usually in lower-case text.

Options are specified at the end of the command line, after a leading open round bracket. Options are always single uppercase
letters. Several options may be specified on the same line together - spaces or commas may be used to separate each option, if
required.

File Transfer overview

Six PICK commands are provided to transfer data between PICK and DOS.

Command Function

DOS.PICK Transfers a DOS file to a PICK item or to the PICK Spooler.

PICK.DOS Transfers a PICK item to a DOS file.

DOS.PICK.ALL Transfers a DOS file into multiple items in a PICK file.

PICK.DOS.ALL Transfers multiple PICK items into a single DOS file.

TDUMP Transfers multiple PICK items to multiple DOS files.

TLOAD Transfers multiple DOS files to multiple PICK items.

These core file transfer facilities have been integrated into several utilities supplied in addition to the PICK.DOS and DOS.PICK
commands. The DOS.PICK.ALL, PICK.DOS.ALL, TDUMP and TLOAD commands enable transfers of multiple PICK items to and
from DOS. They provide a very useful method of moving source code (programs) and data between different PICK systems, without
the user ever having to worry about tape incompatibility problems.

During the transfer of data, a window is displayed on the user screen showing the current state of the transfer and information such
as the size of the file, the number of bytes transferred and the estimated time for the transfer.

At the end of the transfer, the user is requested to press a key before the window is closed to allow time to read the final display.

Command options
Integrating file transfer with PICK applications.

Command Options

By default the data is assumed to be textual and DOS records are mapped to PICK attributes and vice versa. To override this
mapping, use the Binary option which performs no translations on the data.

If data is being transferred between the PICK host and a directly connected PC, use the L (Local) option to speed up the transfer.

A number of optional parameters may be specified to control all aspects of the file transfer, such as suppressing the progress
window, removing the need to acknowledge completion, etc.

Integrating File Transfer with PICK Applications

The following commands are all verbs interpreted by the PIX.DRIVER routine. They are processed by the PICK/BASIC subroutines
shown, which you can call from any PICK program.

Command PICK BASIC Subroutine

DOS.PICK PIX.CALL.DOS.PICK

PIX.DOS.PICK

PICK.DOS PIX.CALL.PICK.DOS

PIX.PICK.DOS

DOS.PICK.ALL PIX.DOS.PICK.ALL

PICK.DOS.ALL PIX.PICK.DOS.ALL

TDUMP PIX.TDUMP

TLOAD PIX.TLOAD

Transferring from DOS to PICK

Use the DOS.PICK command to transfer DOS files up to the PICK host, using HOSTACCESS ¢s own protocol which provides fast
error checking and correcting transfers with built in data compression. You can also use DOS.PICK to quickly transfer DOS files into
the PICK spooler.

You can use DOS.PICK as a TCL command or a PICK/BASIC subroutine call to allow seamless integration with Host Applications.

Each DOS file is converted directly into a PICK item. By default, HOSTACCESS converts Carriage Return, Line Feeds (CRLF) into
Attribute Marks. To manipulate data being transferred, use the PICK BASIC subroutine PIX.DOS.PICK

Note: DOS.PICK automatically deals with the systems that can and cannot handle unlimited item sizes. Those systems that do not,
will find that large DOS records are split automatically and cleanly during the upload.

The DOS.PICK Command

Invoke DOS.PICK from the TCL command line as follows:
DOS.PICK {DICT} {filename itemname} FROM dosname {(options}

Where:

DICT Use this literal if itemname is to be created in the dictionary
of the file filename.

filename Is the PICK filename where itemname is to be created.
Should be null if ¢S ¢ or ¢T ¢ options used.

itemname Is the name of the item to be created in the specified PICK
file. Should be null if ¢S ¢ option specified.

 dosname Is the DOS file name to be uploaded to PICK, optionally
containing a drive letter and DOS path. By default,
dosname is uploaded from the current HOSTACCESS
runtime directory.

To determine the status of the file transfer, the status record (as described for PIX.PICK.DOS and PIX.DOS.PICK) is written to the
file PIX.CONTROL.F with a key of nn.FT.LOG, where nn is the port number.

Click here        for options available with the DOS.PICK command.

Click here        for examples.

Options Available With DOS.PICK

Anything following the open left bracket in the DOS.PICK command is treated as an option. Multiple options can be specified with or
without a delimiter. These options are:

O Overwrite the PICK item if it already exists.

S Sends the DOS file directly to the PICK spooler.

F Used with (and after) the S option, carries out a form feed.

T Upload data into the PIX.TRANSFER.F file in
HOSTACCESS ¢s own transmit format. The record is
created in this file using the name of itemname. You can
use this to hold documents and graphics on the PICK host.
To send this data back to DOS, use the DOS.PICK
command (with T option again). File transfers are faster,
there is no limit to the size of DOS files that can be
transferred between PICK and DOS, and there is no
problem storing these files if your PICK system does not
support the character value 255.

2 Splits the data.

H Initiated by host. Transfer status window will not wait for
user acknowledgment before closing and no status
message is printed to the screen. This option is useful for
automated multiple transfers carried out under program
control. The file transfer activity/status window is still
shown before closing.

Z Suppress all file transfer output including the status/activity
window. It is generally used from applications so that the
file transfer takes place completely transparently and
without the user needing to press a key to acknowledge
completion.

B Store a DOS binary file containing control characters.
HOSTACCESS will not convert DOS CRLF ¢s to attribute
marks (CHAR(254)). Characters with ASCII values of 255
(FF) are converted to a ¢~ ¢ (tilde), unless the PICK
system, such as McDonnell Douglas 7.0, supports
CHAR(255) in items. Use the HOSTACCESS command
ENVIRONMENT to determine what action DOS.PICK will
take on receiving a character of decimal value 255.

L Local: use    on locally connected PCs to speed up the
transfer by performing simpler error checking. If
HOSTACCESS detects that you are running over one of its
supported resilient networks, it uses this option by default. .

R Remote - use this to override the default use of the L
option. Use this option if you know that your network may
be non-resilient at any point (e.g. if you are using non-error
checking modems). Use this option if you are experiencing
file transfer errors when communicating over a network.

X To write or spool in HEX. Each byte in the DOS file will be
converted to its equivalent hexadecimal representation in
two characters.

N Nationality - enables correct file transfer of data containing
other language character sets over all types of link (i.e. 7
or 8 bit).

Examples.
Maximum record sizes
Abnormalcharacter conversions.
Storing CHAR (255)<SEGMENT DELIMITER> on PICK Hosts.

DOS.PICK Examples

The following examples highlight the power of this file transfer from TCL. To copy a DOS file C:\MAILSHOT.TXT into a new item
MAIL1 in the PICK file DOCS, use the following command:

DOS.PICK DOCS MAIL1 FROM C:\WP\MAILSHOT.DOC

To copy a DOS file from the PCs floppy disk into an existing item PROG1 (i.e. to overwrite it) in the PICK file BP use the following
command:

DOS.PICK BP PROG1 FROM A:\SOURCE\PROG1.PIX (O

To spool a DOS file C:\AUTOEXEC.BAT to the Host PICK system ¢s spooler with NO user output use the following command :
DOS.PICK FROM C:\DATA.DMP (SZ

To store a WordPerfect document of unlimited size on the host in transmit format that can be sent back to other DOS WordPerfect
users later (creating the item MASTER.LETTER in the file PIX.TRANSFER.F), enter:

DOS.PICK MASTER.LETTER FROM C:\WP\LETTER.DOC (T

Maximum Record Size

Some PICK systems have a maximum record/workspace size limit of around 32000 bytes. DOS files can be considerably larger
than this. If HOSTACCESS detects that it is transferring a large DOS file into a PICK host that does not support large items, it will
split the original file into records smaller than the maximum record size limit.

The split items will be created in the PIX.TRANSFER.F file keyed in numeric splitting order and uniquely identified by the user ¢s
port number. For example, if a DOS file is split 3 times during transfer to the PICK host by a user on Port 24, these records are
stored with the following keys :

FT.SPLIT.24.1
FT.SPLIT.24.2
FT.SPLIT.24.3

The maximum record size limit for HOSTACCESS ¢s DOS to PICK file transfer is a parameter held as attribute 4 in the
ENVIRONMENT item in the PIX.CONTROL.F file.

When HOSTACCESS ¢s host utilities are installed on to your PICK system, the maximum item size is determined and written into
this record. On Prime, UniVerse, UniData and McDonnell Douglas 7.0+ systems this parameter is set to 5 megabytes as there is no
limit on the maximum record size on these systems. You may reset this parameter as required, but you should be aware that this
parameter is common to all users making use of HOSTACCESS ¢s file transfer on the host PICK system.

Abnormal Character Conversions

UniVerse and Prime INFORMATION PICK systems do their own character conversions when writing records into certain file types:
therefore, file transfers of DOS files into Type 1 files may create unpredictable results. INFORMATION treats Type 1 files as sub-
UFD (SAM or DAM files) and UniVerse treats them as a UNIX directory. If DOS files containing binary data are written into these
files, both systems make character conversions such as changing all CHAR(10)s (line feeds) into CHAR(254)s (field/attribute
marks). You should only transfer DOS ASCII text files into Type 1 files.

Storing CHAR(255) <SEGMENT DELIMITER> on PICK Hosts

HOSTACCESS converts CHAR(255) characters (reserved on many PICK hosts) into tildes during file transfer. Attribute 5 of the
PIX.CONTROL.F ENVIRONMENT record contains a true/false flag to show if the host system can support this character. You
should set this attribute to 1 only if you are sure that your PICK host can store this character and you need to transfer DOS files
containing it.

During installation of the Host Utilities this attribute is automatically set to 1 if the host system is: Prime INFORMATION, UniVerse,
UniData or McDonnell Douglas REALITY release 7.0 or later

If your host system is not one of these and you still need to store DOS files containing CHAR (255) on the PICK system, you should
consider holding these in transmit format (via the T option). These files will not be easily accessible by PICK users nor applications
(as the data will be in HOSTACCESS ¢s own internal file transfer format) but may be sent back to DOS as and when required.

Uploading Multiple PICK items

The DOS.PICK.ALL command uploads multiple PICK items from a DOS file. This powerful command can upload records stored in
DOS in a number of formats, including that created by the PICK.DOS.ALL routine. You can call this routine as a subroutine, passing
user-specific options. If you are uploading a file that was previously created with the PICK.DOS.ALL routine, the same keys from the
original file will be used automatically to write these items.

The DOS.PICK.ALL Command

Call DOS.PICK.ALL from the TCL command line, as follows:
DOS.PICK.ALL {DICT} PICKfilename {itemname1... itemnamen} FROM dosname {(options}

Where:

DICT Use this literal if itemname1 ... itemnamen are to be
created in the dictionary of the file PICKfilename.

PICKfilename Is the PICK filename where the items are to be created.

itemname1 ...
itemnamen

The names of the items to be created in the specified PICK
file. If no items are specified, all items will be uploaded
from dosname.

dosname Is the DOS file name to be uploaded to PICK, optionally
containing a drive letter and DOS path. By default,
dosname is uploaded from the current HOSTACCESS
runtime directory.

Click here        for options available with DOS.PICK.ALL.

Click here        for information on using DOS.PICK.ALL.

Options Available With DOS.PICK.ALL

Anything following the open left bracket in the DOS.PICK.ALL command is treated as an option. Multiple options can be specified
with or without a delimiter. These options are:

O Overwrite the PICK item if it already exists.

Z Suppress all file transfer output including the status/activity
window. It is generally used from applications so that the
file transfer takes place completely transparently and
without the user needing to press a key to acknowledge
completion.

B Store a DOS binary file containing control characters.
HOSTACCESS will not convert DOS CRLF ¢s to attribute
marks (CHAR(254)). Characters with ASCII values of 255
(FF) are converted to a ¢~ ¢ (tilde), unless the PICK
system, such as McDonnell Douglas 7.0, supports
CHAR(255) in items. Use the HOSTACCESS command
ENVIRONMENT to determine what action DOS.PICK will
take on receiving a character of decimal value 255.

L Local: use    on locally connected PCs to speed up the
transfer by performing simpler error checking. If
HOSTACCESS detects that you are running over one of its
supported resilient networks, it uses this option by default.

R Remote - use this to override the default use of the L
option. Use this option if you know that your network may
be non-resilient at any point (e.g. if you are using non-error
checking modems). Use this option if you are experiencing
file transfer errors when communicating over a network.

N Nationality - enables correct file transfer of data containing
other language character sets over all types of link (i.e. 7
or 8 bit).

Click here        for options available to override the default format of records uploaded.

Specifying Format of Uploaded Records

By default, DOS.PICK.ALL assumes that you are uploading records in the format created by the PICK.DOS.ALL routine. Using any
of the following options overrides this default and automatically generates sequential numeric keys. Also, using these options allows
any comma-delimited DOS file to be uploaded to the PICK file as multiple items, converting each comma into an attribute mark.

1 Use <CRLF> as the inter-record delimiter and use commas
as the inter-field delimiter.

9 Use first field in delimited file as the key to the PICK file,
instead of using the automated key.

0 Strip any double quotes from the data.

The DOS.PICK.ALL upload will stop when all the specified items have been found, regardless of whether the entire DOS file has
been uploaded.

To determine the status of the file transfer, the status record (as described for PIX.PICK.DOS and PIX.DOS.PICK) is written to the
file PIX.CONTROL.F with a key of nn.FT.LOG, where nn is the port number.

Using DOS.PICK.ALL

Using DOS.PICK.ALL

To upload all PICK items into the PICK file STAFF from a single DOS file called STAFFILE.ALL (that was created using the
PICK.DOS.ALL routine), and overwrite any existing records, use the following command:

DOS.PICK.ALL STAFF FROM C:\FILES\STAFF\STAFFILE.ALL (O

To upload all PICK items into the DEMO file from a single comma-delimited DOS file using sequential keys starting from 1, and
remove any double quotes, use the following command:

DOS.PICK.ALL DEMO FROM DEMO.TXT (10

Any records found in the file with the same key as the automatically generated key will not be overwritten without the O option.

Transferring From PICK to DOS

Use the PICK.DOS routine to transfer PICK items to DOS. It uses HOSTACCESS ¢s own protocol which provides fast, error
checking and correcting transfers with built in data compression.

PICK.DOS is available as a TCL command or as a PICK/BASIC subroutine call to allow seamless integration with Host Applications.

PICK.DOS is designed to transfer single PICK items into a DOS file. HOSTACCESS also provides powerful facilities for passing
data directly into most DOS packages. See GET and PASS.TO for more information.

If the DOS file exists it will be overwritten, otherwise it will be created. HOSTACCESS assumes the data is textual and attribute
marks will be converted to Carriage Return/Line Feeds (CRLF), value marks and sub-value marks will be converted to spaces and a
DOS end of file character will be written to the end of the DOS file. Options are provided to override this translation.

Note: PICK data will be downloaded in the PICK internal format.

The PICK.DOS Command

PICK.DOS may be invoked from the TCL command line with a number of parameters and options as described below :
PICK.DOS {DICT} {filename itemname} TO dosname {(options)

Where:

DICT Use this literal if itemname is to be retrieved from the
dictionary of filename.

filename Is the PICK filename where itemname is to be retrieved
from. Should be null if T option used.

itemname Is the name of the item to be sent to DOS.

dosname Is the DOS file name to be created or overwritten,
optionally containing a drive letter and DOS path. If no path
is specified, dosname is created in the current
HOSTACCESS runtime directory.

To determine the status of the file transfer, the status record (as described for PIX.PICK.DOS and PIX.DOS.PICK) is written to the
file PIX.CONTROL.F with a key of nn.FT.LOG, where nn is the port number.

Click here        for options available with the PICK.DOS command.

Options Available with PICK.DOS

Anything following the open left bracket is treated as an option. Multiple options can be specified with or without a delimiter. These
options have the following effect:

A Append to the existing DOS file. This is useful for building
up one large DOS file from a number of PICK items. If this
option is not specified, the DOS file will be overwritten, or
created if it does not already exist.

T Data is downloaded from the PIX.TRANSFER.F file using
the record itemname. This record is created by DOS.PICK
with the T option and is a very powerful way of holding
DOS files, such as documents, graphics, spreadsheets
etc., on the PICK host. By holding the records in this
format, file transfers are faster, there is no limit to the size
of DOS files that can be transferred between PICK and
DOS, and there is no problem of storing these files if your
PICK system does not support the character value 255.

2 Splits the data.

H Initiated by host. Transfer status window will not wait for
user acknowledgment before closing and no status
message is printed to the screen. This is useful for
automated multiple transfers carried out under program
control. The file transfer status window is still shown so
that the user is aware that something is happening.

Z Suppress all file transfer output including the status
window. It is generally used from applications so that the
file transfer takes place completely transparently and
without the user needing to press a key to acknowledge
completion.

B Binary file - override default. i.e. no conversion of Attribute
Marks CHAR(254) to CRLF and no conversion of value
and sub-value marks to spaces.

L Local option, for a locally connected PC - this will speed
up the transfer by performing simpler error checking. If
HOSTACCESS detects that you are running over one of its
supported resilient networks, it will use the "L" option by
default.

R Remote option - use this to tell HOSTACCESS not to
automatically use the L option when running file transfer
over non resilient networks. You should specify this option
if you know that your network may be non-resilient at any
point (e.g. if you are using non-error checking modems).
Use this option if you are experiencing file transfer errors
when communicating over a network.

N Nationality - enables correct file transfer of data
containing other language character sets over all types of
link (i.e. 7 or 8 bit).

Diagram of File transfer Status Windows.
Examples.
Downloading multiple PICK items.

File Transfer Status Window

Below is a typical example of the status window displayed during file transfer.

File Transfer Examples

All of HOSTACCESS ¢s file transfer capabilities are very easy to use. For direct integration of PICK data with DOS packages, refer
to GET and PASS.TO.

The following examples highlight the power of file transfer from TCL:

To transfer the host PICK item PROG1 from the file BP to the DOS C:\source\prog1.prg, enter:
PICK.DOS BP PROG1 TO C:\source\prog1.prg

To transfer a WordPerfect document of unlimited size, stored on the host in HOSTACCESS ¢s transmit format named
MASTER.LETTER into the DOS file C:\WP\LETTER.DOC, enter:

PICK.DOS MASTER.LETTER TO C:\WP\LETTER.DOC (T

You may also directly transfer a PICK item to a DOS print service, for example:
PICK.DOS BP PROG2 TO LPT1

Downloading Multiple PICK items

The PICK.DOS.ALL command creates one DOS file from an active select list or from an entire PICK file. The DOS file contains all
the selected PICK items and their real keys in an internal format specific to HOSTACCESS. To upload the records in the file, use the
DOS.PICK.ALL routines.

TDUMP can also download multiple PICK items, but will create a DOS file for each record. However, TDUMP has the advantage
that it is capable of quickly uploading specific records.

PICK data is downloaded in the PICK internal format. Dates and numerics are stored as integers; for example, “24 AUG 94”
becomes “9733”. See the PASS.TO... sections for details of this format.

The PICK.DOS.ALL Command

PICK.DOS.ALL may be invoked from the TCL command line as follows:
PICK.DOS.ALL {DICT} PICKfilename {itemname1... itemnamen} TO dosname {(options)

Where:

DICT Use this literal to specify the dictionary of PICKfilename.

PICKfilename Is the name of the PICK file to transfer from

itemname1 ...
itemnamen

Are the names of the items to be sent to DOS. If not
specified, either the active select list or the entire PICK file
will be downloaded.

dosname Is the DOS file name to be created or overwritten,
optionally containing a drive letter and DOS path. If no path
is specified, dosname is created in the current
HOSTACCESS runtime directory.

To find the status of the file transfer, the status record (as described for PIX.PICK.DOS) is written to the file PIX.CONTROL.F with a
key of nn.FT.LOG, where nn is the port number.

Options available.
Using PICK.DOS.ALL.

Options Available With PICK.DOS.ALL

Anything following the open left bracket in the PICK.DOS.ALL command is treated as an option. Multiple options can be specified
with or without a delimiter. These options are:

A Append to the existing DOS file. This is useful for building
up one large DOS file from a number of PICK items. If this
option is not specified, the DOS file will be overwritten, or
created if it does not already exist.

Z Suppress all file transfer output including the status
window. It is generally used from applications so that the
file transfer takes place completely transparently and
without the user needing to press a key to acknowledge
completion.

B Binary file - override default. i.e. no conversion of Attribute
Marks CHAR(254) to CRLF and no conversion of value
and sub-value marks to spaces.

L Local option, for a locally connected PC - this will speed
up the transfer by performing simpler error checking. If
HOSTACCESS detects that you are running over one of its
supported resilient networks, it will use the "L" option by
default.

R Remote option - use this to tell HOSTACCESS not to
automatically use the L option when running file transfer
over non resilient networks. You should specify this option
if you know that your network may be non-resilient at any
point (e.g. if you are using non-error checking modems).
Use this option if you are experiencing file transfer errors
when communicating over a network.

Note      If the records contain any control characters or any multivalues or subvalues, you should use the B (binary) option for
download and upload.

Using PICK.DOS.ALL

To download selected records from the PICK file STAFF into a single DOS file called STAFFILE.ALL, use the following commands:

SELECT STAFF WITH AGE > "65"
PICK.DOS.ALL STAFF TO C:\FILES\STAFF\STAFFILE.ALL

To download all programs in the BP file into a single DOS file called PROGS.ALL, enter:

PICK.DOS.ALL BP TO PROGS.ALL

Dumping PICK Items to DOS

Use the TDUMP command to dump a specified file or items to a DOS disk, in a similar way to PICK ¢s TDUMP utility dumping to
tape. You can then use the TLOAD command to load them up again (for example on another host), removing any tape
incompatibility problems.

This routine is very useful for program files and small data files, and also gives you a cost-effective way of shipping your data to
different hosts as well as backing up your important programs. Simply dial up your customer site (if they have HOSTACCESS host
programs loaded), TLOAD your latest code, compile, delete and disconnect.

This program exploits the PICK.DOS command.

If a PICK select list is active, i.e. you have executed a SELECT, SSELECT or GET-LIST immediately prior to invoking TDUMP, then
this list will be applied to the file to be TDUMPed.

This program is not designed for exporting PICK data into different DOS formats for down-loading into DOS packages. This is
achieved using the GET and PASS.TO routines.

Click here for details of downloading multiple PICK items.

Note: TDUMP can dump a maximum of    999 records at a time. This is because DOS only allows a maximum of 3 characters as a
file extension.

You may also notice that the more DOS files created, the slower the transfer. This is due to the DOS file management system.

The TDUMP Command

TDUMP may be invoked as a TCL command and follows a very similar format to the standard PICK T-DUMP command. The syntax
is as follows:

TDUMP {DICT} {filename} {itemname} {(options}

Where:

DICT Use this literal to specify the dictionary of filename.

filename Is the PICK data file from which items will be dumped.

itemname Is the optional name of any single item to be dumped. If
you specify the item name as an asterisk "*" then all
records in the file will be dumped.

You are then prompted for the DOS ¢tape ¢ name. This must be no longer than 8 characters and should not include a DOS
extension, as this will be appended by TDUMP. Lastly, you are prompted for the path to the DOS directory where the ¢tape ¢ is to
be stored. This must be the FULL path.

PICK.DOS.ALL.
Options available for the TDUMP command.
TDUMP Example.

 INTER.SEND.
INTER.RECEIVE.

Options for the TDUMP Command

Any characters following the open round bracket are treated as options. Multiple options may be specified as follows:

O Overwrite existing ¢tape ¢ DOS files if they already exist.

Z Suppress display of file transfer status windows which
would normally appear for each item in the file.

S Suppress record id ¢s being displayed as they are
downloaded.

Any of the PICK.DOS file transfer options are also valid. The B binary option is forced ON by default to allow multi-values etc. to be
passed between hosts.

Note: If a file transfer error occurs, TDUMP automatically restarts.

TDUMP Example

Say you want to TDUMP selected records in the BP file down to DOS. At TCL, enter:
SELECT BP = "[GAME]"
TDUMP BP (ZS

At the tape name prompt type : PROGRAMS. At the directory prompt type : C:\TAPES. This    creates the following DOS files in the
C:\TAPES directory:

PROGRAMS.PIX An internal index used to identify what ¢s in the TAPE
to enable TLOAD to load the records back with the
correct keys.

PROGRAMS.001 The first record

PROGRAMS.002 The second record

PROGRAMS.xxx etc.

PROGRAMS.XRF Index to identify DOS name given to each PICK name.

You can then backup all of these DOS files say to drive B by typing at DOS, COPY C:\TAPES\PROGRAMS.* B: This diskette could
then be sent to another site, perhaps, where they could run a corresponding TLOAD to upload the programs.

Uploading PICK files from DOS

TLOAD performs similar functions to PICK ¢s T-LOAD utility but instead of loading the specified file or records from tape, they are
loaded from a DOS disk. Please TDUMP prior to using this command. TLOAD uploads records from DOS created by TDUMP.

The TLOAD Program

TLOAD may be invoked as a TCL command and follows a very similar format to the standard PICK T-LOAD command. The syntax
is as follows:

TLOAD {DICT} {filename} {(options}

Where:

DICT Use this literal to specify the dictionary of filename

filename Is the PICK data file into which items will be loaded.

You will then be prompted for the DOS tape name. This must be the name used when the data was dumped by the TDUMP
command.

The second and final prompt is for the path to the DOS directory where the ¢tape ¢ filenames are stored. This must be the full path

e.g. C:\HOST

Note    If a file transfer error occurs, TLOAD automatically restarts.

 Uploading multiple PICK items using DOS.PICK.ALL.
Options available with TLOAD.
TLOAD Example.

 Passing PICK data into DOS or Windows Packages.
 INTER.SEND.

INTER.RECEIVE.

Options available with TLOAD

Any characters following the left brackets are treated as options. Multiple options may be specified as follows:

O Overwrite any existing PICK items if they already exist.

S Suppress item id ¢s being displayed as they are uploaded.

Z Suppress display of file transfer status window which
would normally appear for each record uploaded.

? The inclusion of this option will cause TDUMP to display a
list of ALL the items found and then allow you to either
enter selected item names or enter an ¢* ¢ to upload all
items.

TLOAD Example

Say you want to TLOAD the DOS files into the BP file from the ¢tape ¢ PROGRAMS. (i.e. to upload using the data that would have
been created following the example in TDUMP). At TCL, enter the following command :

TLOAD BP (OZ

At the tape name prompt type : PROGRAMS
At the directory prompt type : C:\TAPES

This will upload any records found in DOS and overwrite the corresponding PICK items. The Z option will suppress the file transfer
windows.

Passing PICK Data into DOS or Windows Packages

HOSTACCESS ¢s Host Utilities have automated almost every aspect of extracting data from PICK databases and passing all or any
portion of this into DOS or Windows packages, in PICK ¢s external format.

Host utility drivers are provided for PICK users to enable them to easily and quickly pass PICK data into virtually every DOS and
Windows package available today, from WordPerfect to Lotus amongst others. Options are even provided for the users to specify
how they would like the data to be presented by the DOS or Windows package, e.g. as a pie-chart within SuperCalc.

Click here        for further information.

Inter-Session File Transfer

The following sections describe how you can use the routines documented to perform file transfer between HOSTACCESS
sessions.

DOS.PICK
PICK.DOS
DOS.PICK.ALL
PICK.DOS.ALL
INTER.SEND
INTER.RECEIVE

DOS.PICK

DOS.PICK may be invoked from TCL in inter-session mode using the following syntax:
DOS.PICK {DICT} {PICKfilename    itemname }    FROM sessionname {(C}{ options}

Where:

DICT Use this literal if itemname is to be created in the dictionary
of the file PICKfilename

PICKfilename Is the PICK file name where itemname is to be created.

FROM
sessionname

Is the literal text FROM followed by the name given to this
transfer session. The session name may be any name
which the user wants to allocate. This name then identifies
this particular session to all other sessions. Any other
HOSTACCESS session which is given a PICK.DOS
command using this session name and the (C option will
then establish an inter-session communications link. Data
will be then be transferred between the 2 sessions.

(C This is mandatory as it signifies to HOSTACCESS that the
user wishes to invoke an inter-session data transfer as
opposed to an ordinary DOS to PICK transfer. When
DOS.PICK is invoked with a (C option HOSTACCESS will
attempt to establish a communications link with another
HOSTACCESS session which is using the same session
name. As soon as this link is established, data transfer will
take place provided that the commands are used in a
complementary fashion. e.g. a DOS.PICK transfer as
described here should always attempt to establish a link
with another HOSTACCESS session running a PICK.DOS
command.

options All other normal DOS.PICK options are available. Options
should be used sensibly. Always bear in mind that this
session will interface with another session running a
PICK.DOS command.

PICK.DOS

PICK.DOS may be invoked from TCL in inter-session mode using the following syntax :
PICK.DOS {DICT} {PICKfilename    itemname }    TO    sessionname {(C}{ options}

Where:

DICT Use this literal if itemname is to be retrieved from the
dictionary of the file filename

PICKfilename Is the PICK file name where itemname is to be retrieved
from. Should be null if T option used.

TO sessionname Is the literal text TO followed by the name given to this
transfer session. The session name may be any name
which the user wants to allocate. This name then identifies
this particular session to all other sessions. Any other
HOSTACCESS session which is given a DOS.PICK
command using this session name and the (C option will
then establish an inter-session communications link. Data
will be then be transferred between the 2 sessions.

(C This is mandatory as it signifies to HOSTACCESS that the
user wishes to invoke an inter-session data transfer as
opposed to an ordinary PICK to DOS transfer. When
PICK.DOS is invoked with a (C option HOSTACCESS will
attempt to establish a communications link with another
HOSTACCESS session which is using the same session
name. As soon as this link is established, data transfer will
take place providing the commands are used in a
complementary fashion. e.g. a PICK.DOS transfer as
described here should always attempt to establish a link
with another HOSTACCESS session running a DOS.PICK

command.

options All other normal PICK.DOS options are available with the
exception of the A - append operation. Options should be
used sensibly. Always bear in mind that this session will
interface with another session running a DOS.PICK
command.

DOS.PICK.ALL

DOS.PICK.ALL may be invoked in inter-session mode from the TCL command line as follows :
DOS.PICK.ALL {DICT} {PICKfilename} FROM sessionname {(C}{options}

Where:

DICT Use this literal if the records are to be created in the
dictionary of the file PICKfilename

PICKfilename Is the PICK filename where the records are to be created

FROM
sessionname

Is the literal text FROM followed by the name given to this
transfer session. The session name may be any name
which the user wants to allocate. This name then identifies
this particular session to all other sessions. Any other
HOSTACCESS session which is given a PICK.DOS.ALL
command using this session name and the (C option will
then establish an inter-session communications link. Data
will be then be transferred between the 2 sessions.

(C This is mandatory as it signifies to HOSTACCESS that the
user wishes to invoke an inter-session data transfer as
opposed to an ordinary DOS to PICK transfer. When
DOS.PICK.ALL is invoked with a (C option HOSTACCESS
will attempt to establish a communications link with another
HOSTACCESS session which is using the same session
name. As soon as this link is established, data transfer will
take place providing the commands are used in a
complementary fashion. e.g. a DOS.PICK.ALL transfer as
described here should always attempt to establish a link
with another HOSTACCESS session running a
PICK.DOS.ALL command.

options All other normal DOS.PICK.ALL options are available.
Options should be used sensibly. Always bear in mind that
this session will interface with another session running a
PICK.DOS.ALL command.

PICK.DOS.ALL

PICK.DOS.ALL may be invoked in inter-session mode from the TCL command line as follows:
PICK.DOS.ALL {DICT} {PICKfilename { itemname1 ... itemnamen } TO    sessionname {(C}{options}

Where:

DICT Use this literal if the records are to be retrieved from the
dictionary of the file PICKfilename

PICKfilename Is the PICK filename where the records are contained

itemname1 ...
itemnamen

Are the names of the items to be retrieved from the
specified PICK file. If no itemnames are specified, all
records will be transferred or if a SELECT command is
active then the items selected will be transferred.

TO sessionname Is the literal text TO followed by the name given to this
transfer session. The session name may be any name
which the user wants to allocate. This name then identifies
this particular session to all other sessions. Any other
HOSTACCESS session which is given a DOS.PICK.ALL
command using this session name and the (C option will
then establish an inter-session communications link. Data

will be then be transferred between the 2 sessions.

(C This is mandatory as it signifies to HOSTACCESS that the
user wishes to invoke an inter-session data transfer as
opposed to an ordinary DOS to PICK transfer. When
PICK.DOS.ALL is invoked with a (C option HOSTACCESS
will attempt to establish a communications link with another
HOSTACCESS session which is using the same session
name. As soon as this link is established, data transfer will
take place providing the commands are used in a
complementary fashion. e.g. a PICK.DOS.ALL transfer as
described here should always attempt to establish a link
with another HOSTACCESS session running a
DOS.PICK.ALL command.

options All other normal PICK.DOS.ALL options are available with
the exception of the A - append operation. Options should
be used sensibly. Always bear in mind that this session will
interface with another session running a DOS.PICK.ALL
command.

INTER.SEND

INTER.SEND and INTER.RECEIVE are provided for all those who regularly use HOSTACCESS ¢s TDUMP and TLOAD
commands. These 2 commands invoke HOSTACCESS ¢s inter-session mode. Consequently, instead of records being dumped to
DOS by TDUMP and then    subsequently being uploaded to PICK, data is transferred directly between 2 sessions of
HOSTACCESS.

Note: one session must be running the INTER.SEND command and the other session must be running the INTER.RECEIVE
command.

INTER.SEND may be run from TCL using the following syntax:
INTERSEND {DICT} {PICKfilename} {itemname}TO sessionname {(options}

Where:

DICT Use this literal if itemname is to be retrieved from the
dictionary of the file PICKfilename

PICKfilename Is the PICK file name from which items will be transmitted.

itemname Is the optional name of any single item to be dumped. If
itemname is set to * then all items will be dumped. If
itemname is not specified then any items in an active
SELECT list will be dumped.

TO sessionname Is the literal text TO followed by the name given to this
transfer session. The session name may be any name
which the user wants    to allocate. This name then
identifies this particular session to all other sessions. Any
other HOSTACCESS session which is given a
INTER.RECEIVE command using this session name and
the (C option will then establish an inter-session
communications link. Data will then be transferred between
the 2 sessions.

options Other options are the same as for TDUMP

INTER.RECEIVE

INTER.RECEIVE and INTER.SEND are provided for all those who regularly use HOSTACCESS ¢s TDUMP    and TLOAD
commands. However, these 2 commands invoke HOSTACCESS ¢s inter-session mode. Consequently, instead of records being
dumped to DOS by TDUMP and then being    subsequently uploaded to PICK, data is transferred directly between 2 sessions of
HOSTACCESS.

Note: One session must be running the INTER.SEND command and the other session must be running the INTER.RECEIVE
command.

INTER.RECEIVE may be run from TCL using the following syntax :
INTER.RECEIVE {DICT} {PICKfilename}FROM sessionname {(options}

Where:

DICT Use this literal if items are to be created in the dictionary of
the file PICKfilename

PICKfilename Is the PICK file name to which items will be transferred.

FROM
sessionname

Is the literal text FROM followed by the name given to this
transfer session. The session name may be any name
which the user wants to allocate. This name then identifies
this particular session to all other sessions. Any other
HOSTACCESS session which is given a INTER.SEND
command using this session name and the (C option will
then establish an inter-session communications link. Data
will be then be transferred between the 2 sessions.

options Other options are the same as for TLOAD except for the ?
option which is not supported.

Applications Programs

This section describes EASY.ACCESS    and related functions - GET and PASS.TO. These applications make extensive use of the
PICK AiF Programs library and are excellent examples of what can be achieved by combining the power of PICK/BASIC with AiF
and the DOS environment.

EASY.ACCESS A user-friendly database inquiry front-end which
automatically builds database inquiry and extraction
commands using the PICK inquiry language (INFORM,
ENGLISH, RetrieVe, RECALL, etc.).

GET A powerful database extraction program combining the
power of PICK ¢s inquiry language with full support for all
dictionary correlatives, conversions and I-types.

PASS.TO A number of "PASS.TO" routines that will take data
formatted by GET and pass this to popular DOS or
Windows products, such as LOTUS, SuperCalc,
WordPerfect, WORD for Windows, etc..

EASY.ACCESS

EASY.ACCESS is a powerful user-friendly front-end for all versions of PICK ¢s inbuilt inquiry language. It may be used to create and
execute inquiry sentences for:

INFORM Prime INFORMATION
ENGLISH McDonnell Douglas REALITY
ACCESS PICK R83
RetrieVe VMark UniVerse
RECALL Ultimate
Uniquery UniData

EASY.ACCESS supports all of the inquiry commands in ALL the PICK flavours. Developers have full control of which commands are
presented to the user and may modify (or remove) the command descriptions available to the user to construct sentences.

Specific tables of commands and modifiers have been prepared especially for UniVerse and Prime INFORMATION users and these
are selected automatically by EASY.ACCESS to match the machine type you are running on.

Help is available for certain commands and options by calling TCL HELP (only if standard HELP is supported on that system). If help
is requested for a Dictionary Definition, the definition is displayed within a pop-up window.

EASY.ACCESS has been integrated with HOSTACCESS ¢s PASS.TO DOS and Windows facilities, to allow the result of virtually
any inquiry to be automatically transferred into DOS or Windows applications including databases, spreadsheet products, and word
processors.

The data extraction and transfer is completely automatic and includes:
· Taking the user into the DOS or Windows product.
· Importing the transferred data.
· Presenting the user with the result (for example, a LOTUS 3-D pie-chart).
When using the PASS.TO facilities, the relevant DOS or Windows product will be called and the data imported, e.g.
PASS.TO.LOTUS.

Some "PASS.TO" routines only create a DOS file and do not call a DOS or Windows product. For example, PASS.TO.DIF will create
a DIF file under DOS in the file called PIXELnnn.TMP (where ¢nnn ¢ is the PICK user ¢s port number) in the current

HOSTACCESS directory.

Starting EASY.ACCESS.
Using EASY.ACCESS.
EASY.ACCESS Applications Integration.
EASY.ACCESS diagram.

EASY.ACCESS interface

Starting EASY.ACCESS

To start EASY.ACCESS, invoke it from the TCL command line as follows:

EASY.ACCESS {filename} {group} {(options}

Where:

filename Optional name of data file for which inquiries will be constructed.
This can also be specified from within EASY.ACCESS.

group Dictionary groups can be set up as records in the dictionary of
filename. These records allow you to logically group together
dictionaries. i.e. SALES, COSTS. And, more importantly, groups
can be used to restrict access to certain areas of the dictionary.

Using the word ALL, overrides any groups and will present the user with ALL of the dictionaries found in the file.

(options Anything following the open left round bracket is treated as an
option. Multiple options can be specified with or without a
comma delimiter. Most of the options are designed to be set
when EASY.ACCESS is CALLED as a subroutine from other
applications. These options can be as follows

C Clear last sentence, as by default, EASY.ACCESS displays the last
sentence for this port.

D Used with the C option, clears back to default sentences held in the
PIX.DEFAULTS record in the PIX.CONTROL.F file. The format of
this record is the same as the other records in this file.

132 Switch EASY.ACCESS into 132 column mode.

A The user will not be able to select ALL of the dictionaries. Only
groups are allowed. This option is ignored if NO groups are found
in the file so ensure you have at least one.

M Multiple Groups, this option tells EASY.ACCESS to prompt for
dictionary names by first prompting for the group name. Some
users may find this a more friendly way of presenting dictionaries,
some users may find this restrictive. Applications may FORCE the
user to use multiple groups by setting both the ¢F ¢ and ¢M ¢
options.

F Security feature - If a group name or ¢M ¢ option is used with the
¢F ¢ option, the user is FORCED to use them. This option is useful
if applications wish to limit users to only certain parts of the
dictionary. The user will also NOT be able to change files or load
other sentences. To FORCE the user to use a previously saved
sentence, the application can copy this saved record from the
PIX.EASY.ACCESS.F file into the ¢LAST.SENTENCE.PORT.n ¢
record.

Using EASY.ACCESS

All of EASY.ACCESS ¢s facilities are presented to the user in friendly pop-down menus and selection boxes. Users are guided
through these menus in a logical but efficient manner when constructing inquiry sentences. The ease of use of the menu system is
one of EASY.ACCESS ¢s strongest points. Use of just the arrow keys, <RETURN> and <ESCAPE>, allows the user to quickly access
and select the menu options required.

A number of Function keys are provided for general use throughout the menus, which may be used instead of moving to the
appropriate menu option. At the top most level of EASY.ACCESS main menus, these are:

F5 Process sentence.

F10 Help on currently highlighted option or dictionary definition (if
system supports HELP command from TCL).

Other function keys available while reviewing (amending) parts of the constructed sentence are:

F1 Amend text/option.

F2 Delete text/option.

F3 Move text/option.

F8 Restore text/options.

The <ESCAPE> key should be used to return from lower menu levels or to exit from EASY.ACCESS when at the top menu level.

You may review the various component parts of the final sentence at any point. For example, you may wish to change the Selection
Criteria - simply select Review from the Selection menu.

Dictionary groups may be used to ¢break-up ¢ perhaps a very large list of dictionary items into smaller and more manageable
groups. Options are available to the user to select to work with a different group on the fly (unless the F FORCE option has been
used).

Dictionary Groups are records defined in the Dictionary of the file being used by EASY.ACCESS. They have the following format:

Key PIX.GROUP.groupname

Field 1 Group description

Field 2 Multi-valued list of Dictionary Definition keys belonging to this group,
these should really exist in the dictionary of the file to ensure valid
sentences are constructed.

Where:

Groupname User defined name for this group (e.g. SALES,
DEPARTMENTS) - the file containing the group name
must be prefixed by "PIX.GROUP." and thus is selected
automatically by EASY.ACCESS for use by the users.

Group
description

Up to 60 characters describing this group - this is the text
that will be presented to the user when working with
groups.

These Dictionary Groups should be entered into the appropriate Dictionary files.

Sentences may be saved and recalled by selecting the relevant options from the CONFIG menu. Any saved sentences are stored in
the file PIX.EASY.ACCESS.F which normally points back to the main HOSTACCESS account. This file can be created in the local
account if preferred.

You may also specify that the data file be inquired upon by using another Dictionary definitions file (uses generic PICK USING
construct).

Selecting and processing one of the ¢pass to PC ¢ application options tells EASY.ACCESS to call HOSTACCESS ¢s data
extraction command GET and then call the relevant PASS.TO routine.

EASY.ACCESS Applications Integration

EASY.ACCESS is processed by the subroutine PIX.EASY.ACCESS which may be called by any PICK program, as follows:
CALL PIX.EASY.ACCESS(TCL.INPUT,TCL.OPTIONS)

Where:

TCL.INPUT May be null or any of the command line parameters
described above (i.e. PRICES SALES) for the SALES
group from the PRICES file.

TCL.OPTIONS May be null or any of the command line options described
above i.e. C132F to FORCE only the SALES group from
the PRICES file, ¢C ¢learing the last sentence and
switching HOSTACCESS into 132 column mode first.

Program Example
*
* Program to call EASY.ACCESS using the file PRICES and
* force the user to only look at the SALES group of
* dictionaries. Where PIX.GROUP.SALES exists in the
* dictionary of the file PRICES containing the list of
* dictionaries in that group as a multi-value array etc.
*
* The 'C' option tells EASY.ACCESS to clear the previous
* sentence first and start with an empty statement.
*
 CALL PIX.EASY.ACCESS("PRICES SALES","C")
*

GET - Extracting PICK Data to Pass to DOS or Windows

GET is a powerful facility that follows a similar syntax to the LIST and SORT commands from the standard PICK inquiry language.
But, instead of sending the result of the inquiry to the screen or printer, the GET command stores the result in a temporary file, ready
to send to any one of the many DOS or Windows products supported by HOSTACCESS. For instance the TCL statement:

GET STAFF NAME AGE SALARY // WITH RETIREMENT = "1991"

could be used to extract the data from the STAFF file that can be subsequently transferred to WordPerfect in mailmerge format and
print the letters to all people retiring in 1991. Also:

GET STAFF BREAK-ON DEPT TOTAL SALARY // BY DEPT

could be used to extract the data from the STAFF file that can be subsequently transferred to a LOTUS 123 spreadsheet and plot a
piechart of the salary breakdown by department.

The GET command evaluates and processes the inquiry statement and stores the data in a specific port dependent file ready for
subsequent transfer to a DOS file.

GET is not involved in passing the data to DOS or to Windows. To pass the data to a DOS or Windows product in the format you
require, you only have to run one of the PASS.TO routines provided.

Starting GET.
Using GET.
GET Applications Integration.

Starting GET

GET may be invoked from the TCL command line and if a select list is active, it will be used. At first sight, the GET syntax may look
confusing. However, the command differs only slightly from the standard PICK LIST and SORT commands. The main difference is
that GET requires the syntax to be in a specific order with some additional delimiters (the ¢// ¢ or ¢%% ¢). At the end of this
section, there are some examples that show just how easy it is to use GET. The GET command may be entered at TCL as follows:

GET file {USING dictfile} {output} {suppression} {// sort_selection} {%% listname} {(options}

Where:

file The name of the PICK Data file.

USING dictfile Optional if separate dictionary required on data file.

output Output list of dictionary definitions in order required. This
may also include the BREAK-ON, TOTAL and GRAND-
TOTAL modifiers. The following modifiers may also be
used if your host system normally supports them from the
LIST/SORT commands, AVERAGE, PERCENT etc.

suppression Optional suppression modifiers including ID-SUPP, DET-
SUPP, HDR-SUPP, COL-HDR-SUPP.

// The // is used to help GET identify the start of the
sort/selection criteria. If not used and there is no active
select list GET will prompt for the sort/select the start of the
sort/selection criteria. The // can be used on its own to
suppress the prompt if no sort/selection criteria is required.

sort_selection If you have specified the // delimiter, the SORT and/or
SELECTion criteria should be specified in the normal
ACCESS format, e.g. WITH field EQ "100", BY, BY-DSND,
etc.

%% The %% is used to help GET find the specified ¢listname
¢ in the command. Even though GET will work from the
currently active select list, it is useful, for instance when
calling GET as a subroutine, to be able to pass a select list
name. GET will then do a GET-LIST of ¢listname ¢ before
processing the GET command.

listname The name of the previously saved list should be specified
after the %% delimiter.

(options Everything following the ¢(¢ delimiter is treated as an
option. Options can be combined and may be space or
comma delimited. They may be:

B Suppresses the blank lines between breaks and totals.

C Same as COL-HDR-SUPP

I Same as ID-SUPP

D Same as DET-SUPP

H Same as HDR-SUPP

P Send the result to the printer instead of the file.

S Suppresses the display of all progress messages.

T Send the result to the terminal screen instead of the file.

. If a full-stop is in the options, this suppresses the dots used
as column separators on output reports.

Note: The ¢T ¢ and ¢P ¢ options are normally used only to check that GET is producing the results you expect, if you are
experiencing difficulties.

Using GET.
GET Applications Integration.

Using GET

GET is very simple to use, just enter the TCL command as described above and you should have no problems. When the GET
routine has finished you are returned direct to TCL. If any errors occurred, these will be reported.

Some sample TCL commands using GET:

1. GET SALES BREAK-ON AREA TOTAL COST TOTAL SALES    ID-
SUPP DET-SUPP // BY AREA WITH AREA NE "NORTH" %% LIST.A

Will generate a summary 3 column output file, area, cost and sales
using a previously saved list LIST.A

2. GET SALES AREA DESC PROFIT LY.PROFIT //

Will generate an output file containing 4 columns, area, desc, profit
and last year ¢s profit. Since ¢// ¢ is used, you will not be prompted for
any sort or selection criteria.

3. GET SALES AREA DESC PROFIT LY.PROFIT %% LIST.A

Will generate an output file containing 4 columns, area, desc, profit,
last year ¢s profit using a previously saved list called LIST.A.

4. GET-LIST LIST.A at TCL followed by the above GET command without
¢%% LIST.A ¢ will have the same effect.

In each of the above cases, the resulting information is stored in the file PIX.OUTPUT.nn.F (where nn is the port number). If the file
does not already exist it is created, otherwise it is cleared before use.

This file will normally contain one header record and one or more detail records with sequential keys. These records contain the
result of the GET inquiry with an attribute mark delimiting each line of output and a multi-value delimiting each column. Most users
will have no interest in the format of the file since they are only interested in passing the result of their inquiry on to their required
DOS or Windows product.

After running GET you can run any of the PASS.TO routines to transfer the data to Windows or DOS spreadsheets, wordprocessors,
etc. You may run any of the "PASS.TO" routines over and over on the same inquiry without having to re-run GET, because the
PIX.OUTPUT.nn.F file remains intact until the next GET.

GET Applications Integration.

GET Applications Integration

GET is processed by the subroutine PIX.GET which may be called by any PICK program as follows:
CALL PIX.GET(OUTPUT,SORT,OPTIONS,LIST.NAME,ERROR)

Where

OUTPUT Should start with the file name followed by the output list of
dictionaries in the order required. This may also include the
BREAK-ON, TOTAL and GRAND-TOTAL modifiers as well
as ID-SUPP, DET-SUPP etc. The following modifiers are
also supported if your host system normally supports them
from the LIST/SORT commands, AVERAGE, PERCENT,
CALC etc.

SORT This variable should be passed containing the SORT and
SELECTION criteria that would normally follow the
//documented earlier.

OPTIONS Should be the string containing any/all of the options, such
as I,D,H,C, etc. documented earlier.

LIST.NAME If no ¢%% ¢ is passed via TCL.INPUT, this variable may
be passed as the name of the previously saved list to be
used with the inquiry. This variable is optional.

ERROR Since GET relies on certain HOSTACCESS control files
existing, if any of them are not found the user will see an
error message on the screen and this variable will be set to
TRUE. Your application should take action accordingly, i.e.
do not call a "PASS.TO" if ERROR set since the output
may be invalid.

Program Example
*
* Program to automate taking everybody from the STAFF file
* aged 65 and over using a GET-LIST name of COMPANY.A.LIST
* and creating a Wordperfect mailmerge file with
* ID, name, address, age, date of birth, and salary
* information.
*
OUTPUT = "STAFF NAME ADD1 ADD2 ADD3 AGE DOB SALARY"
*
SELECTION = 'WITH AGE >= "65" BY SURNAME'
*
CALL PIX.GET(OUTPUT,SELECTION,"", "COMPANY.A.LIST",ERROR)
*
CALL PIX.PASS.TO.WORDPERFECT("WP5", "C:\WP\RETIRE.DOC",ERROR)
*
END

PASS.TO - Passing PICK Data Directly into DOS or Windows Products

HOSTACCESS provides a powerful facility for PICK users to be able to pass data directly into DOS or Windows products using
virtually any ACCESS/ENGLISH/INFORM etc., like statement. It is not necessary for a user to understand how to read or import
data into the DOS or Windows software since HOSTACCESS, through the PASS.TO routines, can do everything automatically.

 "PASS.TO" implies all of the HOSTACCESS pass to DOS or Windows routines, for example PASS.TO.EXCEL, PASS.TO.LOTUS,
PASS.TO.SUPERCALC, PASS.TO.SYMPHONY, PASS.TO.QUATTRO, PASS.TO.WORD, or PASS.TO.WORDPERFECT. The
PASS.TO routines fall into the following categories:

PASS.TO spreadsheet products - PASS.TO.EXCEL, PASS.TO.LOTUS, PASS.TO.SUPERCALC, PASS.TO.SYMPHONY,
and PASS.TO.QUATTRO.

PASS.TO word processing products - PASS.TO.WORD and PASS.TO.WORDPERFECT.
PASS.TO DOS files - PASS.TO.DIF and PASS.TO.DOS.
PASS.To Other PC Products and Formats.

Click here        for notes on    PASS.TO.

Click here        for information on using PASS.TO.

Notes on Using PASS.TO

Each of these PASS.TO categories is described    in its own section, showing general syntax rules and examples for that category.
Any details that are specific to a particular routine are then documented separately in a subsection.

All these routines can be driven directly as TCL commands. They can also be driven from PICK/BASIC as subroutine calls or are
available as command interfaces from EASY.ACCESS.

It is recommended that you read the topics relating to the GET process    before using any of the PASS.TO routines.

All the PASS.TO routines will pass the data from the last GET inquiry into the particular DOS or Windows software product or file
format such as LOTUS, SUPERCALC, DIF etc.

Each PASS.TO application has a control record, and any application that supports both DOS and Windows has 2 records, the
Windows record having a suffix of .WINDOWS. The PASS.TO control records also hold information on graph types (where relevant)
and how to start and run the DOS or Windows application.

Most of the PASS.TO routine names that explicitly imply a DOS or Windows product, for example PASS.TO.LOTUS (as opposed to
those that imply a DOS file format such as PASS.TO.DIF) not only file transfer the data to the PC but also take the user directly into
the product as well. In most cases, PASS.TO routines can continue by importing the data and even plotting graphs automatically,
without any user intervention.

Note 1      For backwards compatibility, the COMMAND parameter in all the PASS.TO application subroutines still exists. However,
we recommend that you leave this null and that the DOS or Windows command is stored in attribute 3 of the relevant control record
in the PIX.CONTROL.F file. For example, with PASS.TO.LOTUS the stored command would read:

003      123

and with PASS.TO.LOTUS.WINDOWS the stored command would read:
003      123W.EXE

This is based on the assumption that your DOS PATH variable has been correctly configured to point to this command. We
recommend that you use this standard for calling all DOS or Windows applications through HOSTACCESS.

The command used to start the spreadsheet application is retrieved by reading attribute 3 of the PASS.TO. application record in the
PIX.CONTROL.F file. If the ¢nth ¢ multi-value (¢n ¢ being port number plus 2) is not null then the command stored there is used. If
this multi-value is null then the command stored in multi-value 1 is used. We recommend that everyone on the host calls the
particular DOS or Windows product in the same way. That is, they should use multi-value position 1 only. This is easier on networks,
for example, where the port number is not always known.

Note 2      When you use PASS.TO routines, temporary DOS files are created. If data is being passed to a DOS product, the
temporary files are subsequently removed automatically. However, if data is being passed to a Windows product, the temporary files
cannot be deleted owing to Windows multi-tasking environment. Your application may want to delete this temporary DOS file or just
leave it to be overwritten by the next PASS.TO routine. The temporary DOS file is called PIXELnn.TMP (in PASS.TO.QUATTRO it is
called PIXELnn.DIF) where nn is the host port number.

Note 3      EXCEL, and the Windows versions of    WORD, QUATTRO PRO, and LOTUS, can be DDE servers. Therefore, data that
is passed to or merged into these products using the PASS.TO routines is done using the DDE calls and subroutines built into
HOSTACCESS for Windows.

Using the PASS.TO Routines

An example of the way a "PASS.TO" routine works in conjunction with GET is briefly described here.

If you require a spreadsheet containing sales information for each area, the following TCL statement:

GET SALES BREAK-ON AREA TOTAL SALES ID-SUPP // BY AREA

followed by:

PASS.TO.LOTUS (P

will take the result of the GET statement, transfer this data into a DOS file, call LOTUS (for Windows or DOS), import the DOS file,
change the column widths, and draw a piechart. All with no user intervention.

PASS.TO Applications Integration

The PASS.TO facilities can easily be integrated into PICK applications so that a PICK user could, perhaps, select a menu option
such as ¢Histogram total Costs by Area ¢. Underneath, your application will first call the GET subroutine and then call the
PASS.TO.LOTUS subroutine. The user will see this facility as an integral part of your own application and will be completely
unaware that the GET and PASS.TO are doing most of the work.

PASS.TO Program Example

*
* Program to automate taking last year's COST figures
* out of PICK using ACCESS statements via the GET
* process and then to plot a LOTUS histogram.
*
* GET called with D and I options, DET-SUPP and ID-SUPP
*
CALL PIX.GET ("COST.FILE BREAK-ON AREA TOTAL COSTS",
"BY AREA","DI","",ERROR)
*
CALL PIX.PASS.TO.LOTUS("","H",ERROR) ; * "H"istogram
*
END

PASS.TO. Spreadsheet Product

These routines include PASS.TO.EXCEL, PASS.TO.LOTUS, PASS.TO.QUATTRO, PASS.TO.SUPERCALC and
PASS.TO.SYMPHONY. Click here          for more information.

The PASS.TO routines that relate to spreadsheet products take the data produced by the last GET statement    and pass this directly
into a new spreadsheet. The data will be imported automatically into the new spreadsheet. Numbers will be imported into the
spreadsheet as numerics. The column widths will be changed to correctly match those in each output dictionary specified in the
GET command.

Because a new spreadsheet is created, the user can save this to a spreadsheet file as required. If the user exits from the
spreadsheet, say after viewing a graph, no data is saved.

Starting the PASS.TO Spreadsheet Routine.
PASS.TO Spreadsheet Examples.
PASS.TO Spreadsheet Applications Integration.
PASS.TO Spreadsheet Example Program.

Starting the PASS.TO Spreadsheet Routine

The PASS.TO spreadsheet routine may be called from the TCL command line as follows:
PASS.TO.programname {(graph_type}

Where:

programname Is EXCEL, LOTUS, SUPERCALC, SYMPHONY, or
QUATTRO.

graph_type If null, the data is just imported and the user is taken into
the spreadsheet.

You may specify the graph type either by using the name
of the graph or by using a number that corresponds to the
required graph type. A list of graph type names is held in
attribute 2 of the control record
PASS.TO.programname(.WINDOWS) in the
PIX.CONTROL.F file. The graph type number should be
the number of the multi-value in attribute 2 of this record.

Specifying one of the graph options tells the PASS.TO
routine that, after transferring and importing the data and
changing the column widths, it should also plot the ranges
and draw the relevant graph for the user automatically.
Once plotted, the user can then select other graph types,
change the data for ¢what if ¢ analysis etc., as per normal
in the spreadsheet.

The spreadsheet product need not already be started on
your desktop. HOSTACCESS will determine if the
spreadsheet program is already running and, if not, it will
start it accordingly. Data will then be transferred and
imported automatically whilst the spreadsheet is running
(in the foreground if HOSTACCESS started it, or in the
background if it was already running).

If you are using EASY.ACCESS, the full list of graphs is shown after selecting to pass data to the spreadsheet product.

PASS.TO Spreadsheet Examples

Let ¢s say that you want to produce an EXCEL spreadsheet containing sales information from the file SALES, with total sales per
area, then plot a piechart. This can be done by just typing at TCL:

GET SALES BREAK-ON AREA TOTAL SALES // BY AREA (ID

to extract the data from the SALES file and then typing at TCL:
PASS.TO.EXCEL (P

This will take the user into a new EXCEL spreadsheet. Using DDE, the data will be automatically imported and a piechart drawn.
Because a new spreadsheet is created, the user can save this to any normal spreadsheet file as required.

Although this example uses EXCEL, it is equally applicable to all other supported spreadsheet products.

PASS.TO Spreadsheet Applications Integration

PASS.TO.programname is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine
PIX.PASS.TO.programname which may be called by any PICK program.

PICK developers who wish to integrate their applications with PASS.TO.programname should call the PIX.PASS.TO.programname
subroutine directly as follows:

CALL PIX.PASS.TO.programname (COMMAND,GRAPH.TYPE, ERROR)

Where:

programname Is EXCEL, LOTUS, SUPERCALC, SYMPHONY, or
QUATTRO.

COMMAND Should be null. The command is read from attribute 3 of
the control record PASS.TO.programname(.WINDOWS)
in the PIX.CONTROL.F file.

GRAPH.TYPE As above (graph type)

ERROR Because this routine relies on the existence of certain
internal control files, any of these not found will result in the
user seeing an error message and this variable will be set
to TRUE. This can be used to determine if the
PASS.TO.programname was unsuccessful. Your
application should take appropriate actions. Under most
circumstances this error will not be set.

PASS.TO Spreadsheet Example Program

The following example uses PIX.PASS.TO.EXCEL but is equally applicable to all other supported spreadsheet products.
 *
 * Program to automate taking sales figures from the SALES
 * file out of PICK using ACCESS statements via the GET
 * process and then to plot an EXCEL Stacked graph.
 *
 * GET called with D and I options, DET-SUPP and ID-SUPP
 *
 CALL PIX.GET("SALES BREAK-ON AREA TOTAL SALES","BY AREA","DI","",ERROR)
 *
 CALL PIX.PASS.TO.EXCEL("","S",ERROR) ; * "S"tacked graph
 *
 END

Note      QUATTRO PRO has 2 anomalies (at time of press), 1 of which is the 128 byte limit on DDE commands. This means that
each DDE instruction causes the QUATTRO PRO screen to flash. The second is that FILE OPEN forces QUATTRO PRO to the
foreground application which shows the user everything that is happening.

PASS.TO. Word Processing Product

These routines include PASS.TO.WORD and PASS.TO.WORDPERFECT.

The PASS.TO routines that relate to word processing products pass data created as a result of the last GET command down to a
temporary DOS file. The word processing product is automatically started or called and the data is merged into the WORD or
WordPerfect document doc_name. The user will be left looking at the final merged documents on the screen and can then choose
to PRINT it after verifying that it is correct.

PIXELnnn.TMP (where ¢nnn ¢ is the PICK user ¢s port number) is the name of the DOS file created in the HOSTACCESS run time
DOS directory containing the mailmerge data.

Starting the PASS.TO Word Processor Routine.
PASS.TO Word Processor Examples.
PASS.TO Word Processor Application Integration.
PASS.TO Word Processor Example Program.

Starting the PASS.TO Word Processor Routine

The PASS.TO word processor routine may be invoked from the TCL command line with the following syntax:
PASS.TO.programname doc_name

Where:

PASS.TO.programname Is the TCL command PASS.TO.WORD or
PASS.TO.WORDPERFECT.

doc_name A document name that must exist as a
programname mailmerge format document.
HOSTACCESS will call programname, retrieve
the document doc_name and pass the necessary
keystrokes to merge that document with the
mailmerge file created by
PASS.TO.programname. The user can then
Save, Print or modify this document as required. If
doc_name is not specified, it is prompted for.

The word processing product need not already be
started on your desktop, HOSTACCESS will
determine if it is already running and, if not, it will
start it accordingly. Data will then be transferred
and imported automatically in the background.

PASS.TO Word Processor Examples

Let ¢s say that you want to create a WORD mailmerge file containing the key, name, address and ages of everybody in the STAFF
file who has retired. This can be done by just typing at TCL:

GET STAFF NAME AGE ADD1 ADD2 TOWN COUNTY %% RETIRED

to extract the data from the STAFF file using a previously saved list called RETIRED and then typing at TCL:
PASS.TO.WORD RETIRE.DOC

which will create a mailmerge format DOS file called PIXELnnn.TMP containing the fields NAME, AGE, ADD1, ADD2, TOWN and
COUNTY from the records extracted by the previous GET statement. It will then take the user into WORD. The document
RETIRE.DOC will be retrieved and automatically mailmerged with the file PIXEL.TMP.

The user can then Save, Print or modify this document as required.

The above example uses PASS.TO.WORD, but it is equally applicable to WordPerfect.

Note: the Word document must have the field names in this document that match the dictionary names that are going to be used.
Please refer to your Word User Guide for details of field names and Mailmerge.

PASS.TO Word Processor Applications Integration

PASS.TO.programname is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine
PIX.PASS.TO.programname which may be called by any PICK program.

PICK developers who wish to integrate their applications with PASS.TO.programname should call the PIX.PASS.TO.programname
subroutine directly as follows:

CALL PIX.PASS.TO.programname ("",DOC.NAME,ERROR)

Where:

programname Is either WORD or WORDPERFECT.

DOC.NAME As ¢doc_name ¢ above, should be a valid mailmerge
document and must be specified.

ERROR Because this routine relies on the existence of certain
internal control files, any of these not found will result in the
user seeing an error message and this variable will be set
to TRUE. This can be used to determine if the
PASS.TO.programname was unsuccessful. Your
application should take appropriate actions. Under most
circumstances this error will not be set.

Click here        for help setting up WORD mailmerge documents.

PASS.TO Word Processor Example Program

The following example program uses PIX.PASS.TO.WORD but is equally applicable to PIX.PASS.TO.WORDPERFECT.
 *
 * Program to automate taking everybody from the STAFF file
 * who is MALE aged between 30 and 40 and creating a
 * WORD mailmerge file with ID, name, address and age.
 * WORD will then be called and the mailmerge file
 * 'PIXELnnn.TMP' will be automatically mailmerged with the
 * document REVIEW.DOC.
 *
 OUTPUT = "STAFF NAME ADD1 ADD2 ADD3 AGE"
 *
 SELECTION = 'WITH AGE >= "30" AND WITH AGE <= "40"'
 *
 CALL PIX.GET(OUTPUT,SELECTION,"","",ERROR)
 *
 CALL PIX.PASS.TO.WORD("","C:\WPDATA\REVIEW.DOC",ERROR)
 *
 END

Note: WordPerfect 5.1 does not support being a DDE server. HOSTACCESS therefore sends the keystrokes to WordPerfect to
automate the MERGE. The only disadvantage is that:
· If WordPerfect is already started, it must have no documents already open and must have a window title of WordPerfect

[Document1 - unmodified]
· The user will see every keystroke as it is replayed and the corresponding screen updates
· Wordperfect must remain as the active foreground application (not minimized) and cannot be interrupted. Unlike DDE,

keystrokes can only be sent to the currently active application - if the user changes this, the mailmerge will fail.
WordPerfect 6 does support DDE.

CREATE.WORD.DICT

CREATE.WORD.DICT creates a DOS file containing a list of dictionaries for a given PICK file. The DOS file can then be used by
WORD for Windows users to assist in the creation of mailmerge documents. The DOS file can be attached from Word ¢s Print
Merge menu. Clicking on the insert field button in WORD will then reveal, as a select list, all the given fields in this file

CREATE.WORD.DICT may be invoked from the TCL command line as follows:
CREATE.WORD.DICT PICK.FILE.NAME, DOS.FILE.NAME

Where:

PICK.FILE.NAME Is the actual PICK file name in this account to use for
the list

DOS.FILE.NAME Is the full DOS path and DOS file name to store the
result in. Normally this path will be where WORD has
easy access to it.

Click here        for an example.

CREATE.WORD.DICT Example

To create a DOS file called STAFF.LST in the directory D:\WINWORD, use:
CREATE.WORD.DICT STAFF D:\WINWORD\STAFF.LST

Using Print Merge from Words File menu and selecting this file as the ATTACH HEADER file you can use the Insert Field button to
select any fields from the STAFF file you wish to use in the merge.

Note    WORD does not support dots (.) in dictionary/field names. This routine automatically deals with this by replacing all dots with
underscores, as appropriate.

PASS.TO DOS File

These routines include PASS.TO.DIF and PASS.TO.DOS.

The PASS.TO routines that relate to DOS files take the data produced by the last GET statement and create a DOS file, either in
DIF format (PASS.TO.DIF), or in a specified format (PASS.TO.DOS).

Many of these common DOS formats can be used by many DOS products to import data. By using a combination of GET and
PASS.TO.DIF or PASS.TO.DOS, ou can integrate PICK data with most DOS products.

Note      If you find that you are using PASS.TO DOS file routines and are frequently having to manually import the file into your DOS
software then please contact PIXEL. We may be able to provide you with the routines and tools to automate the import process for
yourDOS software.

PASS.TO.DIF

PASS.TO.DIF may be invoked from the TCL command line with the following syntax:
PASS.TO.DIF    {dos_file}

Where:

PASS.TO.DIF Is the TCL command.

dos_file Is an optional DOS file name (including path and directory if
required) where you wish the DIF file to be stored. If null, the
DIF file will be created in the current HOSTACCESS
directory with PIXELnnn.TMP (where nnn is the PICK user
¢s port number) as the file name.

PASS.TO DIF Examples.
Application Integration.
Example Program.

PASS.TO.DIF Examples

Let ¢s say you want to create a DIF file containing the name, address and ages of everybody in the STAFF file who has retired. This
can be done by just typing at TCL: -

GET STAFF NAME AGE ADD1 ADD2 TOWN COUNTY %% RETIRED

To extract the data from the SALES file using a previously saved list called RETIRED and then typing at TCL:
PASS.TO.DIF RETIRE.DIF

This will create a DIF format DOS file called RETIRE.DIF (in the run-time HOSTACCESS directory) containing the fields NAME,
AGE, ADD1, ADD2, TOWN and COUNTY from the records extracted by the previous GET statement.

PASS.TO.DIF Applications Integration

PASS.TO.DIF is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine PIX.PASS.TO.DIF which may be
called by any PICK program.

PICK developers who wish to integrate their applications so that DIF files are created automatically should call the
PIX.PASS.TO.DIF subroutine directly as follows:

CALL PIX.PASS.TO.DIF(DOS.FILE,ERROR)

Where:

DOS.FILE Is an optional DOS file name (including path and directory if
required) where you wish the DIF file to be stored. If null, the DIF
file will be created in the current HOSTACCESS directory with
PIXELnnn.TMP (where nnn is the PICK user ¢s port number) as
the file name.

ERROR Since this routine relies on the existence of certain internal control
files, any of these not found will result in the user seeing an error
message and this variable will be set to TRUE. This can be used
to determine if the PASS.TO.DIF was unsuccessful. Your
application should take appropriate actions. Under most
circumstances this error will not be set.

PASS.TO.DIF Example Program

 *
 * program to automatically create a DIF file STOCK.DIF
 * containing the product code (key), description, buy price
 * sell price, and current stock quantity for all stock
 * with a buy price of greater than 100 pounds.
 *
 OUTPUT = "STOCK DESC BUY SELL QTY"
 *
 SELECTION = 'WITH BUY > "100.00"'
 *
 CALL PIX.GET(OUTPUT,SELECTION,"","",ERROR)
 *
 CALL PIX.PASS.TO.DIF("C:\DBASE\STOCK.DIF",ERROR)
 *
 END

PASS.TO.DOS

The DOS file formats provided for with PASS.TO.DOS include:
· Comma delimited.
· Quote delimited.
· Space delimited.
· Fixed length.
· User definable.

Starting PASS.TO.DOS.
Examples.
Applications Integration.
Example Program.

Starting PASS.TO.DOS

PASS.TO.DOS may be invoked from the TCL command line with the following syntax:
PASS.TO.DOS {dos_file} {delim_1} {delim_2} {(option}

Where:

PASS.TO.DOS Is the TCL command. If no other parameters are specified
then a file called PIXELnnn.TMP (where ¢nnn ¢ is the PICK
user ¢s port number) is created in the current
HOSTACCESS directory as a comma delimited file using the
data from the last GET statement.

dos_file Is an optional DOS file name (including path and directory if
required) where you wish the created file format to be stored.
If null then the file will be created in the current
HOSTACCESS directory with the name PIXELnnn.TMP
(where ¢nnn ¢ is the PICK user ¢s port number).

delim_1 If specified, delimiter 1 is the character(s) to put in front of
every dictionary output value.

delim_2 If specified, delimiter 2 is the character(s) to put after every
dictionary output value.

For instance, to obtain a quote delimited file, both delim_1
and delim_2 should be quotes. Setting the option parameter
to 1 would achieve the same result.

If using delim_1 and delim_2 when using PASS.TO.DOS
from TCL you must specify the dos_file parameter.

(option By setting this option to 1,2,3 or 4, the DOS file will be
created in the format as follows:
1.    Comma delimited (default)

2.    Quote delimited

3.    Space delimited

4.    Fixed Length

Option 4 uses the length held in each dictionary to determine
the fixed length of each value. Each value is padded out in a
mask of spaces to that length, either to the right or the left,
depending on the dictionary justification.

If any of the delimiters to be used are found in the actual
data then those characters are converted to an exclamation
mark "!". This is to ensure that the alignment of the values
remain valid.

Starting PASS.TO.DOS Examples

Let ¢s say you want to create a comma delimited file containing the name, address and age of everybody in the STAFF file who has
retired. This can be done by just typing at TCL:

GET STAFF NAME AGE ADD1 ADD2 TOWN COUNTY %% RETIRED

to extract the data from the STAFF file using a previously saved list called RETIRED and then typing at TCL:
PASS.TO.DOS C:\TEMP\RETIRE.TXT

This will create a comma delimited format DOS file called RETIRE.TXT containing NAME, AGE, ADD1, ADD2, TOWN and COUNTY
from the previous GET statement.

PASS.TO.DOS Applications Integration

PASS.TO.DOS is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine PIX.PASS.TO.DOS which may be
called by any PICK program.

PICK developers who wish to integrate their applications, so that these delimited or fixed length DOS files are created automatically,
should call the PIX.PASS.TO.DOS subroutine directly as follows:

CALL PIX.PASS.TO.DOS(DOS.FILE,DELIM1,DELIM2,OPTIONS,ERROR)

Where:

PASS.TO.DOS Is the TCL command. If no other parameters are specified
then a file called PIXELnnn.TMP (where ¢nnn ¢ is the PICK
user ¢s port number) is created in the current
HOSTACCESS directory as a comma delimited file using the
data from the last GET statement.

dos_file Is an optional DOS file name (including path and directory if
required) where you wish the created file format to be stored.
If null then the file will be created in the current
HOSTACCESS directory with the name PIXELnnn.TMP
(where ¢nnn ¢ is the PICK user ¢s port number).

delim_1 If specified, delimiter 1 is the character(s) to put in front of
every dictionary output value.

delim_2 If specified, delimiter 2 is the character(s) to put after every
dictionary output value.

For instance, to obtain a quote delimited file, both delim_1
and delim_2 should be quotes. Setting the option parameter
to 1 would achieve the same result.

If using delim_1 and delim_2 when using PASS.TO.DOS
from TCL you must specify the dos_file parameter.

(option By setting this option to 1,2,3 or 4, the DOS file will be
created in the format as follows:
1.    Comma delimited (default)

2.    Quote delimited

3.    Space delimited

4.    Fixed Length

Option 4 uses the length held in each dictionary to determine
the fixed length of each value. Each value is padded out in a
mask of spaces to that length, either to the right or the left,
depending on the dictionary justification.

If any of the delimiters to be used are found in the actual
data then those characters are converted to an exclamation
mark "!". This is to ensure that the alignment of the values
remain valid.

ERROR Since this routine relies on the existence of certain internal
control files, any of these not found will result in the user
seeing an error message and this variable will be set to
TRUE. This can be used to determine if the PASS.TO.DOS
was unsuccessful. Your application should take appropriate
actions. Under most circumstances this error will not be set.

PASS.TO.DOS Example Program

 *
 * program to automatically create a fixed length format DOS
 * file called STOCK.FIX containing the product code (key),
 * description, buy price, sell price, and current stock
 * quantity for all stock with a buy price greater than
 * 100 pounds.
 *
 OUTPUT = "STOCK DESC BUY SELL QTY"
 *

 SELECTION = 'WITH BUY > "100.00"'
 *
 CALL PIX.GET(OUTPUT,SELECTION,"","",ERROR)
 *
 CALL PIX.PASS.TO.DOS("C:\DBASE\STOCK.FIX","","",4,ERROR)
 *
 END

PASS.TO Other PC Products and Formats

HOSTACCESS supports a large number of DOS and Windows products and formats. The tools and facilities provided allow simple
and yet powerful integration of PICK data with virtually any product in the DOS and Windows world.

With the ever changing number of software products available it is impossible for HOSTACCESS to cover every user ¢s preference
for every DOS and Windows product and format.

Pixel guarantee to seriously consider any user requests for a more seamless integration with other DOS and Windows products. We
feel that we owe a lot of HOSTACCESS ¢s success to our willingness to listen to our users and provide enhancements that can then
be shared with other users of the product.

To that end, you may find that other PASS.TO routines are available but are not obvious from the standard documentation. These
will be documented in either loose-leaf addenda or in a READ.ME file.

If you require any assistance in respect of the PASS.TO routines, or in fact any of the HOSTACCESS facilities then please do not
hesitate to contact your HOSTACCESS dealer directly by phone or with detail, by fax.

Note    Pixel are happy to provide the full source code for any of the PASS.TO routines, should you need to modify them. The source
programs provided with HOSTACCESS are normally encrypted to save space and are unreadable.

Additional TCL Utilities

You can use the features described in this section, on all PICK systems, to:

Open and close windows from TCL.
Change screen size.
Display images in HOSTACCESS.
Install and update account.
View control parameters.

DB    An invaluable PICK Programmers toolkit for fast editing,
compiling and running of programs and much more.

CALCIT A pop-up calculator written in PICK/BASIC but running at
DOS speeds.

All of these routines are written in PICK/BASIC - please feel free to copy and modify them to suit your own host applications
requirements.

All these routines are verbs interpreted by the PIX.DRIVER routine, and are processed by their own subroutines which can be
processed by any PICK program and called from anywhere within your own applications. Upon completion, HOSTACCESS restores
your application screens instantly.

Opening and Closing Windows from TCL

PICK applications can use HOSTACCESS to open coloured windows on the screen instantly. The window is painted on top of the
current screen with optional effects such as shadowing. PICK applications can be dramatically enhanced with slight changes to
enable them to run in a window.

Once opened, the window takes all cursor addressing and text output to that window only. The window effectively becomes a mini
screen with the top left corner of the window being addressed as column 0 row 0.

Windows can be closed instantly by using the CLOSE.WINDOW command. The underlying screen is instantly restored giving the
appearance - the window just disappears.

Normally, opening and closing windows will be done directly from applications. These commands are useful however for highlighting
the power of HOSTACCESS without having to resort to any form of programming.

Opening a window.
Closing a window.
Applications integration.

Opening a Window

To open a window, enter the following TCL command (keeping spaces as shown):
OPEN.WINDOW x,y,x,y foreground,background effects

In all cases the comma ¢, ¢ needs to be specified

x,y,x,y Are the screen column (x) and row (y) co-ordinates for the
window position. The first pair of x,y are the top left hand
corner of the screen position and the second pair are the
bottom right corner of the position. (Any border specified in
¢effects ¢ will be painted around the window after it has been
drawn at these co-ordinates).

foreground,
background

These 2 parameters specify the color in which you require the
window to be drawn. E.g. WHITE,RED will draw a red window
with white text (WHITE on RED). Colors should be entered as
their normal names, and may be prefixed by "LIGHT" for
intense colors. Color names are : BLACK RED GREEN
BROWN BLUE MAGENTA CYAN WHITE GREY YELLOW

effects Multiple effects can be added to the window, and may be as
follows:
 SINGLE or DOUBLE: or SINGLE DOUBLE: or DOUBLE
SINGLE: add border around window as a single or double line
to the top and sides.
SHADOW: draw a shadow to the right and below the window.
Any text in the shadow will be low intensified.
EXPLODE: when drawing the window, HOSTACCESS will
draw from the center outwards giving an exploding effect.

Closing a Window

To close the last opened window, instantly refreshing the screen, use the TCL command :
CLOSE.WINDOW

To close the last opened window, without refreshing the screen (leaving the window as normal text on the screen), use:
CLOSE.WINDOW leave

where leave is a literal.

Click here        for an example.

Window Examples

To open a green window with yellow text and run a LISTU in that window use:
OPEN.WINDOW 1,5,78,18 YELLOW,GREEN SINGLE,EXPLODE
LISTU
CLOSE.WINDOW

To open a blue window with white text and run a listing of the MD (VOC) in that use:
OPEN.WINDOW 5,5,70,15 WHITE,BLUE SINGLE,EXPLODE,SHADOW
TERM 65,11
LIST MD *A1 *A2 *A3 WITH *A1 = "D]"
CLOSE.WINDOW
TERM 79,23

Window Applications Integration

OPEN.WINDOW and CLOSE.WINDOW are processed by the subroutines PIX.OPEN.WINDOW and PIX.CLOSE.WINDOW. To
integrate windowing, PICK programs use:

CALL PIX.OPEN.WINDOW(POSITION,COLOUR,EFFECTS)

Where POSITION as ¢x,y,x,y ¢ above, COLOUR as ¢foreground,background ¢ above, and EFFECTS are as ¢effects ¢ above.
This is shown in the following example:

 * Program to open 2 windows on the screen, the first to do
 * a LISTU, the second to do a LIST MD
 CALL PIX.OPEN.WINDOW("1,5,78,18","WHITE,RED","SINGLE")
 EXECUTE "LISTU" ; INPUT REPLY
 CALL PIX.OPEN.WINDOW("5,5,70,15","RED,CYAN","SHADOW,DOUBLE")
 EXECUTE "TERM 65,11"
 EXECUTE 'SORT MD *A1 *A2 *A3 WITH *A1 = "D"'
 INPUT REPLY
 EXECUTE "TERM 79,23"
 CALL PIX.CLOSE.WINDOW("") ;* close 2nd window
 CALL PIX.CLOSE.WINDOW("") ;* close 1st window
 END

Changing Screen Size

You can change the current HOSTACCESS screen size directly from the TCL prompt, using the SCREEN.MODE command. The
screen mode can also be changed from HOSTACCESS ¢s configuration menus for each session. The mode can also be changed
directly from procs and programs by calling the relevant AiF sequence.

This will reset the current HOSTACCESS session, i.e. all windows, backpages etc. will be lost. Changing between 132 and 80
column mode does preserve the current screen text for compatibility with certain terminal types.

Note: All modes are supported under Windows, regardless of card type.

Changing Screen Size from TCL

To change the screen size from the TCL command line, enter::
SCREEN.MODE {mode}

Where mode is a mode number which have the following effects:

0 Change to 132 x 24 screen. This is only valid if your PC and
monitor can support 132 column mode on screen.

1 Change to 80 x 24 screen. This is the default mode.

2 Change to 80 x 42 screen (EGA cards only).

3 Change to 80 x 49 screen (VGA cards only).

5 Change to 132 x 25 screen (VGA cards only).

6 Change to 80 x 25 screen (VGA cards only).

7 Change to 80 x 43 screen (EGA cards only).

8 Change to 80 x 50 screen (VGA cards only).

9 Change to 40 x 24 screen (all cards).

10 Change to 40 x 25 screen (all cards).

For example, to set your screen size to 80 columns by 40 rows (if you have a PC that supports VGA), enter:

SCREEN.MODE 4

SCREEN.MODE Applications Integration

SCREEN.MODE is processed by the subroutine PIX.SCREEN.MODE.

Remember, this will reset the current session. To preserve the session when changing modes from an application, call the
PIX.PUSH.ENVIRONMENT subroutine prior to changing modes. The PIX.POP.ENVIRONMENT subroutine can be called to restore
the session screen mode, windows, menus etc., upon completion.

To integrate other screen modes, PICK programs can call the PIX.SCREEN.MODE subroutine as follows:
CALL PIX.SCREEN.MODE(MODE)

Where MODE is as mode above.

SCREEN.MODE Example Program

 *
 * Program to preserve the current session, change the screen
 * mode to 50 lines (VGA only)and do a LIST MD. The program
 * will prompt for input before restoring the session back
 * to its original state.
 *
 CALL PIX.PUSH.ENVIRONMENT ; * save session
 *
 CALL PIX.SCREEN.MODE(3) ; * 50 rows x 80 columns
 *
 EXECUTE "TERM 79,49" ; * tell PICK to match screen size
 *
 EXECUTE 'LIST MD WITH *A1 = "D]" *A1 *A2 *A3'
 *
 INPUT WAIT: ; * give user a chance to read
 *
 EXECUTE "TERM 79,23" ; * set PICK
 *
 CALL PIX.POP.ENVIRONMENT ; * restore screen mode, text etc.,
 *
 END

Mouse Demonstration and Test from TCL

MOUSE.TEST is a small PICK/BASIC utility that can be run from TCL, showing how the mouse can be used with HOSTACCESS on
your PC. We recommend that you also look at the PIX.MOUSE.TEST program to see how the code is structured.

MOUSE.TEST allows the user to move and click the mouse pointer over the current screen. Pressing and releasing the mouse
button(s) cause a small box to appear around the position where the mouse button is pressed. The status line is also used to
indicate which button you have pressed along with the column,row co-ordinates it was pressed at.

This program will only run if your PC supports a mouse through a mouse driver loaded into memory, or if you have Windows with a
mouse. MOUSE.TEST will report an error message if no mouse is found.

This facility demonstrates just how powerful the mouse can be when your own software applications are in control.

Using MOUSE.TEST

MOUSE.TEST may be invoked from the TCL command line as follows:
MOUSE.TEST

The user should see a block cursor on the screen and, by moving the mouse, this cursor will move accordingly indicating the
¢position of the mouse ¢. By clicking any of the buttons on the mouse, a small box is drawn and the status line will be updated to
indicate what has happened.

By dragging the mouse whilst holding down a button, the status line is continuously updated. The co-ordinates are also displayed
indicating where you released the mouse button.

One or more mouse buttons may be held down at the same time.

Press <RETURN> on the PC ¢s keyboard to stop the MOUSE.TEST program and reset the screen.

MOUSE.TEST Applications Integration

MOUSE.TEST is a subroutine that calls the main mouse driving subroutines. The subroutines are PIX.MOUSE.AVAILABLE,
PIX.MOUSE.ON, PIX.MOUSE.RESPONSE and PIX.MOUSE.OFF.

Two programs are provided with HOSTACCESS that fully utilize the mouse. These are PIX.MOUSE.TEST and PIX.CALC. It is
recommended that you examine these programs.

MOUSE.TEST Example Program

*
* This program will activate the mouse and allow any of
* the mouse buttons to be used. An '*' will be printed
* anywhere on the screen that the mouse is pressed.
*
* Pressing <return> will cause BUTTON to return as false
* which causes this program to stop.
*
MOUSE.FOUND = 0
*
CALL PIX.MOUSE.AVAILABLE(MOUSE.FOUND)
*
IF NOT(MOUSE.FOUND) THEN
 PRINT "MOUSE NOT FOUND - ASK THE CAT!"
 STOP
END
*
CALL PIX.MOUSE.ON("ALL,CONTINUOUS")
*
OLDX = 0 ; OLDY = 0
*
LOOP
 CALL PIX.MOUSE.RESPONSE (KEYBOARD,BUTTON,XCORD,YCORD)
WHILE BUTTON DO
 PRINT @(OLDX,OLDY):" ":
 PRINT @(XCORD,YCORD):"*":
 OLDX = XCORD ; OLDY = YCORD
REPEAT
*
CALL PIX.MOUSE.OFF
*
END

Displaying Images in HOSTACCESS for Windows

To display images in HOSTACCESS for Windows, invoke WIN.IMAGE from TCL as follows:
WIN.IMAGE imagename {title} {scale} {(options}

Where:

imagename Is the DOS image file name (including drive and path
where necessary) of the image to be displayed. The
imagename must be a valid PCX image file.

scale Is the percentage of the size of the original image to be
displayed. By default, 100 percent is used.

title Is an optional title that will be displayed in the Application
Name bar. If omitted, "Image [imagename]" will be used.

(options May be:
F : specifies that the image is to fit into the size of the
image display window. If specified, this means that if the
user changes the image display window size, the image
will automatically be scaled to fit as best as possible.
C: closes the displayed image window named in title.

For example, to display a full colour photograph called DJB.PCX at full size, with a title of DPick:
WIN.IMAGE C:\IMAGES\DJB.PCX "DPick"

and to close this image:
WIN.IMAGE "DPick" (C

Applications Integration

WIN.IMAGE is processed by the subroutine PIX.WIN.DISPLAY.IMAGE.

Remember, unlike Image for DOS, screen updates and normal input can be achieved whilst an image is being displayed. It is up to
the application or user to close any open images.

Multiple images can be displayed on screen at the same time.

To integrate images, PICK programs can call the PIX.WIN.DISPLAY.IMAGE. subroutine as follows:
CALL PIX.WIN.DISPLAY.IMAGE.(IMAGE.NAME, TITLE, SCALE, STATE, OPTIONS, STATUS)

Where:

IMAGE.NAME Is the DOS image file name (including drive and path
where necessary) of the image to be displayed. The
imagename must be a valid PCX image file.

TITLE Is an optional title that will be displayed in the Application
Name bar. If omitted, "Image [imagename]" will be used.

SCALE Is the percentage of the size of the original image to be
displayed. By default, 100 percent is used.

OPTIONS May be:
F : specifies that the image is to fit into the size of the
image display window. If specified, this means that if the
user changes the image display window size, the image
will automatically be scaled to fit as best as possible.
C: closes the displayed image window named in title.

STATE Specifies how you want the image displayed, as follows:

1: Activates and displays window.

2: Activates and minimizes window.

3: Activates and maximizes window.

7: Displays and minimizes but does not make active.

STATUS 0: Image program started successfully

1: IMAGE.NAME not found in specified path.

2: IMAGE.EXE was not started.

3: C option specified but no IMAGE.NAME or TITLE
specified.

Example Program

* Display 2 images one after the other on the screen followed by
* the same images together on the same screen, of different sizes.
*
IMAGE1 = "C:\HOSTACCESS\DICKPICK"
IMAGE2 = "C:\HOSTACCESS\LIBERTY"

CALL PIX.WIN.DISPLAY.IMAGE(IMAGE1,"","","","",STATUS)
CALL PIX.WIN.DISPLAY.IMAGE(IMAGE2,"","","","",STATUS)
*
* Next image at 50 percent of size
CALL PIX.WIN.DISPLAY.IMAGE(IMAGE1,"",50,"","",STATUS)
CALL PIX.WIN.DISPLAY.IMAGE(IMAGE2,"",50,"","",STATUS)
END

Installation and Update Account

PIX.INSTALL.HOST is a TCL routine. This routine is the same as that used at Host Programs Installation.

It should only be used by the systems administrator to upload Host programs. It can also be used to update other accounts on the
system with the HOSTACCESS commands and files.

You can also use this program to re-upload any or all of the Host Programs and utilities (for example, if you want to restore an
original program), as follows:

1. Delete any program, file, record or TCL command that you
require to be re-uploaded.

2. Type PIX.INSTALL.HOST at TCL from the original account
HOSTACCESS was installed into. Load the floppy disk when
requested.

3. Select the option that will upload the program(s) or
commands you require.

HOSTACCESS will not upload any records in files if they already exist on the host, unless requested. HOSTACCESS will then
upload all or any missing records.

Any MD (VOC) entries that exist will be overwritten but the original will be copied to mdname.ORIGINAL.

Viewing HOSTACCESS Control Parameters

You can view the control parameters that HOSTACCESS is currently using, with the TCL ENVIRONMENT command (calling the
subroutine PIX.ENVIRONMENT).

The information displayed is actually retrieved from the file PIX.CONTROL.F from the record called ENVIRONMENT.

ENVIRONMENT only displays the information from this record. We have deliberately not provided a program to update this record
since it should only be updated with extreme care. It can however be changed using the standard editor if required.

The technical information regarding the display from the ENVIRONMENT routine is as follows.

Machine Type.
Account Name.
Reformat Type.
Max Item Size.
System support for char(255).

Machine Type

This is the identifier indicating the machine type that the HOSTACCESS Host Programs were originally installed onto. This should
not be changed. If you wish to move the programs between different machine types, you should re-install the Host Programs directly
from    the PC.

You can do a full account save of the master account containing the HOSTACCESS Host Programs from one machine and restore it
with the same name to another machine of the SAME type.

Account Name

This is the account name that the HOSTACCESS Host Programs were originally installed into. This should not be changed. Use
either PIX.INSTALL.HOST to update another account or re-install the Host Programs into a new account.

Reformat Type

This is an internal flag to tell HOSTACCESS ¢s GET routine how to function on a multiple range of machines. This is set
automatically and should never be changed by users.

Max Item Size

This is used to tell HOSTACCESS ¢s file transfer facility when to split large DOS records being uploaded onto PICK. HOSTACCESS
will automatically split around this size but will split logically on the nearest attribute. This is a global parameter for all users and is
set at install time to 30000 bytes for standard PICK systems. This is set to 5 megabytes for systems that are known to have an
unlimited item size.

This size may be increased or decreased as required. Setting it too high may cause the PICK workspace to be exceeded even if the
item size is within the limit of the system.

System support for char(255)

This value should be either 0 or 1. It is set automatically at install time to match host "machine type" and will be :

0 Host system does NOT support char(255).

1 Host does support char(255).

Many standard PICK stems do not allow character 255 to be used at all since it is used as an internal segment mark. Since many
DOS files that you may wish to store or print on the PICK host may contain char(255), HOSTACCESS has to strip them out if it is
not supported. This means that some graphics files may not print correctly from DOS to the PICK spooler. Systems that do support
character(255) can both print and store all characters from DOS.

Warning: This value should never be changed unless it is known how the system treats character(255). Setting it to 1 incorrectly
may corrupt your system ¢s database.

Demonstration Program

TERMITE.DEMO is a TCL command that will demonstrate some of the features available for PICK users using HOSTACCESS.

Invoke this command to see these features (presented within a menu) and we are sure that you will be pleasantly surprised by the
power of PICK BASIC programs combined with HOSTACCESS.

DB - A DATA BASIC Programmer ¢s Utility

DB is a utility designed to make life easier for any PICK/BASIC programmer. It uses a powerful pull-down menu style to guide the
programmer through most of the facilities needed when developing programs. The menuing system uses a format similar to that
found in powerful DOS application development tools.

The idea behind DB, in addition to being a utility, is to show just what is possible when you combine the 2 worlds of PICK and
HOSTACCESS. You will find that DB is written entirely in PICK/BASIC!

If a mouse driver is loaded on the PC, or if Windows is running, the user can move around the menus with either the mouse or
keyboard.

The menuing system used by DB is fully re-configurable by the user. The text and commands used by DB are held in the
PIX.CONTROL.F file in the records DB.TEXT and DB.COMMANDS. All you have to do when altering these records is to ensure that
the multi-values in the 2 records remain in alignment. Existing commands may be replaced with the user ¢s preference. For
instance, where DB calls the standard TCL ¢ED ¢ verb, the user may want to call their own preferred editor.

Starting DB.
Using DB.
Applications Integration.

Starting DB

DB may be invoked from the TCL command line as follows:

DB    {file} {program}

Where:

file Is the optional PICK file name where the program you want to work
on resides. This can be entered/altered from within DB
[Program>Change File] option.

program Is the optional PICK item name that you want to work with. This
can be entered/altered from within DB [Program>Change Program]
option.

Using DB.

Using DB

Using DB is very easy. Use the arrow keys to highlight the menu option you want to select and activate by pressing <RETURN>.
Pressing <ESCAPE> from lower level menus returns you up one level. Press <ESCAPE> from the top level menu to EXIT DB. Using a
mouse, if available, is a simple matter of clicking on the required menu and option. To exit DB with a mouse, simply click outside of
the menu area.

Upon exiting DB, the original TCL/application screen is instantly restored allowing DB to be called from virtually anywhere.

The status line normally shows the currently active file and program name. This status display can be disabled/enabled from the
CONFIG menu.

DB remembers the last 20 files and programs the user has been working with. The number 20 can be increased/decreased from the
CONFIG menu. Any one of the last 20 programs can be reselected to become the currently active one by selecting ¢choose from
stack ¢ on the Program menu.

DB is supplied with 6 top level menus and these are basically used for the following purposes:

TOOLKiT - Menu 1.
Program - Menu 2.
Printing - Menu 3.
Special - Menu 4.
DOS - Menu 5.
Config - Menu 6.

Click here        for infomration on applications integration.

TOOLKiT - Menu 1

From here the user can select what process is required to run on the currently active program, i.e. edit, compile, format etc.

Any one of the options from the TOOLKiT menu can be selected by pressing the appropriate function key from any other menu
whilst within DB.

JET is normally provided as one of the editing facilities from DB and can be used if JET is installed on that system. If the user
prefers, the JET command in the DB.COMMANDS record (file PIX.CONTROL.F) can be modified to another editor of your choice.

Program - Menu 2

This menu is used if the user wishes to change the current program being worked on. Three main options are provided to change
file, change program or select from the stack of the last 20 programs. A fourth option on the menu allows you to view information on
the current program, i.e. size, last compiled etc.

Printing - Menu 3

By default this menu has only one option that processes a BLIST file program (P). Other options may be added/amended to suit the
user/system requirements by modifying the PIX.CONTROL.F file records, DB.TEXT and DB.COMMANDS accordingly.

Special - Menu 4

As per menu 3, the options here may be added to/amended to suit the user/system requirements. Any items added to this list are
EXECUTEd by DB when selected. Upon exiting the EXECUTEd routine, the user is returned to DB.

DOS - Menu 5

As per menus 3 and 4, the options here may be added to/amended to suit the user/DOS requirements. Any items added to this list
are passed down to DOS to be processed. Upon exiting the DOS application, the user is returned to DB.

Config - Menu 6

From here, the user can configure DB to their own requirements. The size of the stack can be changed (the number of programs to
remember), the status line display can be toggled on/off.

The user can also turn WINDOWing on/off from this menu. Selecting windows to ON tells DB to attempt to run the commands from
TOOLKiT menu in a window. DB sets the TERM width and depth of the port to match the window size, so the user has to be sure
that the commands selected can be processed through a WINDOW.

The user can also optionally change the colours used by DB for menus and windows.

The user can also select to view the PC fonts table, which shows which characters are available through HOSTACCESS on this PC.

DB Applications Integration

DB is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine PIX.DB which may be called by any PICK
program.

To call DB from a program use a program statement as follows:
CALL PIX.DB

CALCIT - Pop Up Calculator

CALCIT is a useful pop up calculator written in PICK/BASIC that can be called from TCL at any time. It can also be called as a
subroutine from any PICK/BASIC program. When called, the calculator is drawn almost instantly on top of the current
application/TCL screen. When the user exits the calculator, the underlying application/TCL screen is restored instantly to it ¢s
original state.

CALCIT is written entirely in PICK/BASIC!

CALCIT has built in support for a MOUSE. The BASIC program, through HOSTACCESS will detect the existence of the mouse and
allow it to be used in addition to the keyboard.

Starting CALCIT.
Using CALCIT.
Applications Integration.

Starting CALCIT

CALCIT may be invoked from the TCL command line as follows:
CALCIT {startvalue}

Where:

startvalue Is an optional starting value to add into the calculator.

Using CALCIT

Using CALCIT is fairly straightforward. When using the keyboard, you just type the digits you require along with the relevant +, -, *, /,
% keys. If you have a mouse you can also move the mouse pointer to the relevant digit and click to select.

To obtain the result of a calculation, select ¢= ¢ or <RETURN>.

In addition to the numeric and operand keys, the following keys are available :

C - Clear Value.

M - Save Value into Memory.

R - Recall value from memory.

? - Help (shows current precision).

To exit the calculator press Q or click outside of the calculator window with the mouse.

CALCIT Applications Integration

CALCIT is a verb interpreted by the PIX.DRIVER routine. It is processed by the subroutine PIX.CALC which may be called by any
PICK program.

Remember, CALCIT will restore your application screen so you can CALL PIX.CALC from virtually anywhere in your code.

PICK developers who wish to present their users with the CALCIT pop up calculator should call the PIX.CALCIT subroutine directly
as follows:

CALL PIX.CALC(START.VALUE,RETURN.VALUE)

Where:

START.VALUE Optional starting value your application can send to feed
into the calculator. Set this variable to null if no start
value required.

RETURN.VALUE The result of the user ¢s last calculation, which your
application may use, as required.

Programmer ¢s TOOLKiT

You can use HOSTACCESS¢s Programmer¢s TOOLKiT to exploit the power of    library routines and screen manipulation features.

Using HOSTACCESS    you can create a sophisticated, application driven workstation. While continuing to support existing
applications unchanged through industry standard terminal emulations, you can also introduce a PC style user interface to host
applications with colour, windows, pop-down menus and many more features.

The Programmer¢s TOOLKiT is implemented via a set of PICK BASIC subroutines.

Click here        to find out how to produce a more sophisticated user interface, giving a true GUI (Windows) look and feel to your
applications.

Click here        for Programmer Notes.

Programmer Notes

All routines are supported on all PICK systems. All routines are prefixed with ¢PIX. ¢ and they are all CATALOGed on the host
system.

All of our filenames are prefixed with PIX. and suffixed with .F and are either created by the Host Installation procedure or "on the
fly" as and when required by the programs.

All of the applications and utility programs provided are invoked from commands which are processed by one program PIX.DRIVER.
This evaluates what the user typed from the command line and then calls the appropriate subroutine after converting the command
line into the required subroutine parameters. The Host Installation procedure loads the MD (or VOC) file with the appropriate
commands for these programs and utilities.

Executing commands from PROCs.

Executing Commands From PROCs

If you are familiar with PROCs and are used to using these to run commands, you should note that you cannot directly execute
HOSTACCESS host commands from within a PROC. This is because all of these HOSTACCESS host commands are processed by
one program, PIX.DRIVER, which expects to be able to interpret the TCL command line.

To execute the HOSTACCESS host commands from within PROCs, you should use PROCs that build the command line (user
input) for each verb, as in the following examples :

1. PROC to extract data from the STAFF file, in readiness to
pass into a DOS product (say, LOTUS spreadsheet).

PQ
S1
IHGET STAFF BREAK-ON DEPT TOTAL SALARY // BY
DEPT
HPIX.DRIVER
P

2. PROC to pass data (say, that extracted by the GET
statement above) to LOTUS and draw a Stacked graph.

PQ
S1
IHPASS.TO.LOTUS (S)
HPIX.DRIVER
P

If you use PROCs in the above manner, you should consider using BASIC subroutine calls to the appropriate PIX.PROGS.F
subroutine. All of the HOSTACCESS host commands are processed by subroutines that can be called with the relevant parameters.
Click here        for a list of available subroutines.

Programmer¢s TOOLKiT PICK BASIC Subroutines

The following topics cover all the PICK BASIC subroutines used in the Programmer ¢s TOOLKiT. Each subroutine name is prefixed
with PIX.

Each subroutine description explains the syntax components, and provides an example of the subroutine¢s use.

Click here        for an alphabetical list and links to all these subroutines.
The subroutines are divided into the following areas:

Screen display optimization.
Menus.
Selection boxes.
Colours.
Graphics.
Mouse control.
PC Utilities and file transfer.
EASY.ACCESS, PASS.TO and GET.
Miscellaneous.
Windows integration.
DDE.

PICK BASIC Subroutines

Click here        to return to the overview.

PIX.BOX.INPUT Create an input box

PIX.CALC Activate pop-up calculator.

PIX.CALL.DOS Call a DOS application from PICK.

PIX.CALL.DOS.PICK Transfer data from DOS to PICK.

PIX.CALL.PICK.DOS Transfer data from PICK to DOS.

PIX.CENTRE.TEXT Centre text.

PIX.CLOSE.MENU Close menus.

PIX.CLOSE.SELECTION.BOX Close a selection box.

PIX.CLOSE.WINDOW Close a window.

PIX.COLOUR.CONFIG Change colours.

PIX.COMMAND.STACK Activate command stacker.

PIX.CREATE.WORD.DICT Create a list of dictionaries.

PIX.CURSOR Select a cursor.

PIX.DB Activate database utilities.

PIX.DDE.CLOSE Close DDE link.

PIX.DDE.EXECUTE.MACRO Send commands to the server.

PIX.DDE.INITIATE Initiate a DDE channel.

PIX.DDE.POKE Pass data to another Windows application.

PIX.DDE.REQUEST Retrieve data from another Windows
application.

PIX.DISPLAY.IMAGE Display a PCX image file.

PIX.DOS.PICK Transfer a DOS file to a PICK item/PICK
spooler.

PIX.DOS.PICK.ALL Transfer a DOS file into multiple items in a
PICK file.

PIX.DRAW.BOX Draw a box.

PIX.DRAW.LINE Draw a line.

PIX.EASY.ACCESS EASY ACCESS

PIX.ENVIRONMENT Display environment.

PIX.ERASE.DOS.FILE Erase a DOS file.

PIX.EXISTS Check DOS for the existence of a file or
directory.

PIX.EXIT.KEYS Load exit keys.

PIX.FREEZE.OFF FREEZE OFF.

PIX.FREEZE.ON FREEZE ON.

PIX.GET Extract data from a PICK file.

PIX.GET.COLOUR.CODES Set ANSII colours for printing

PIX.GET.MENU.RESPONSE Activate pull down menus.

PIX.GET.SBOX.RESPONSE Activate a selection box.

PIX.GET.SERIAL.NO Returns HOSTACCESS’s serial number to
the Host application.

PIX.GET.SLOT.NUMBER SLOT number.

PIX.LINE.INPUT Create a single line input.

PIX.LOAD.MENU Create and load a menu.

PIX.LOAD.SELECTION.BOX Load a selection box.

PIX.LOCAL.PRINT.DEVICE Change print device.

PIX.MESSAGE.LINE Display a message line.

PIX.MESSAGE.WINDOW Display a message window.

PIX.MOUSE.AVAILABLE Detect a mouse driver.

PIX.MOUSE.OFF Turn off mouse event reporting.

PIX.MOUSE.ON Activates the mouse.

PIX.MOUSE.RESPONSE Turns on mouse reporting.

PIX.MOUSE.TEST Mouse test program.

PIX.OPEN.WINDOW Open a window.

PIX.PASS.TO PASS.To routines

PIX.PASS.TO.DIF Create a DOS file in DIF format.

PIX.PASS.TO.DOS Create a DOS file in a specified format.

PIX.PASS.TO.Spreadsheet.Product PASS.TO spreadsheet.

PIX.PASS.TO Word Processing Product PASS.To Word Processing product.

PIX.PICK.DOS Transfer a PICK item to a DOS file

PIX.PICK.DOS.ALL Transfer multiple PICK items into a single
DOS file.

PIX.POP.ENVIRONMENT Restore session details.

PIX.POP.SLOT Retrieve a screen of data.

PIX.PROGRAM.FKEYS Program function keys.

PIX.PUSH.ENVIRONMENT Save session details and start new
session.

PIX.PUSH.SLOT Save screen .

PIX.SCAN.KEYS Turn on all keys on the DOS keyboard.

PIX.SCREEN.DUMP Send the screen contents to DOS.

PIX.SCREEN.MODE                                  Sets the screen mode.

PIX.SET.COLOUR Sets    colours

PIX.SHOW.PC.FONTS Displays fonts.

PIX.TCL Gives a TCL environment.

PIX.TDUMP Transfer multiple PICK items to multiple
DOS files.

PIX.TERMITE.DIRECTORY                         

PIX.TERMITE.INFO Return information about HOSTACCESS.

PIX.TLOAD Transfer multiple DOS files to multiple
PICK items.

PIX.WIN.CHANGE.STATE Control the Windows state.

PIX.WIN.DISPLAY.IMAGE Display a Windows image.

PIX.WIN.RUN Start a Windows Program.

PIX.WIN.RUNNING Determines whether a Windows
application is running.

PIX.WIN.SEND.KEYS Sends keys in DOS Keyboard stacker
format to specified Windows application.

PIX.WINDOW.EDITOR Creates a window for text editing.

PIX.WINDOW.TITLE Displays title text.

Screen display optimization

The following BASIC subroutines allow you to optimise your screen display:

Save session details and start new
session.

PIX.PUSH.ENVIRONMENT

Restore session details. PIX.POP.ENVIRONMENT

Save screen. PIX.PUSH.SLOT

Retrieve a screen of data. PIX.POP.SLOT

Open a window. PIX.OPEN.WINDOW

Close a window. PIX.CLOSE.WINDOW

Send the screen contents to DOS. PIX.SCREEN.DUMP

PIX.FREEZE.ON PIX.FREEZE.ON

FREEZE OFF. PIX.FREEZE.OFF

Sets the screen mode. PIX.SCREEN.MODE

Save screen details

PIX.PUSH.ENVIRONMENT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PUSH.ENVIRONMENT

This is a very powerful routine that tells HOSTACCESS to save everything to do with the current session onto a stack in memory
and effectively start a new session with all facilities set back to HOSTACCESS ¢s defaults, i.e. colours, status line, new set of 16
slots, new set of 50 menus and selection boxes.

The reason for this feature is important and some examples where it might be used are as follows:

If your application wants to change from 80 to 132 column mode to run a report then a call to PIX.PUSH.ENVIRONMENT before
changing modes would preserve the session onto a memory stack. When you want to go back to 80 column mode with your screen
intact just call PIX.POP.ENVIRONMENT.

Applications that provide gateways out to other applications may need to be able to save and restore their own environment,
especially if the called/gateway applications make use of other or the same HOSTACCESS AiF features.

Restore screen details

PIX.POP.ENVIRONMENT is a BASIC subroutine that can be called from your applications as follows:
CALLPIX.POP.ENVIRONMENT

This routine is used to restore all session details that have previously been stored on the stack by PIX.PUSH.ENVIRONMENT.

Save screen

PIX.PUSH.SLOT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PUSH.SLOT

This is a very powerful routine that tells HOSTACCESS to push the current screen and everything associated with it (cursor position,
colour etc.,) onto a stack in HOSTACCESS ¢s memory.

Your application can then do whatever it likes to the main screen confident in the knowledge that the original screen will be literally
INSTANTLY restored as was, when PIX.POP.SLOT is called.

You can now call any other host application perhaps, you can allow the user to call TCL commands and much more. To restore the
original screen, just pop it back, instantly. By stacking, this routine can be called many times, each time placing the current screen
image on the top of the stack. PIX.POP.SLOT just takes the screen from the top of the stack.

Try making things instantly appear and disappear, try this :

CALL FREEZE.ON

CALL PIX.PUSH.SLOT

EXECUTE    "BLOCK-PRINT HELLO WORLD"

CALL PIX.FREEZE.OFF

INPUT WAIT

CALL PIX.POP.SLOT

Retrieve a screen of data

PIX.POP.SLOT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.POP.SLOT

This routine is used to retrieve a screen of data that has previously been stored on the stack by PIX.PUSH.SLOT.

Open a window

PIX.OPEN.WINDOW is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.OPEN.WINDOW(POSITION, COLOURS, EFFECTS)

This program will open a window on screen at the position specified by the calling program with any colour combination and with
any of the HOSTACCESS window effects. Windows are opened instantly no matter what the line speed. They disappear instantly as
well by calling PIX.CLOSE.WINDOW to restore the screen image underneath.

All subsequent output from the host will be displayed in that window as if the top left of the window is seen by the host as PICK
position 0,0. You can run help in windows and if you set your TERM depth and width to match the window size you can run ACCESS
and other VERBS in the WINDOW.

If you specify a border then that border is put around a window of the size you specify.

The following subroutine parameters need to be passed or will be returned accordingly:

POSITION X,Y,X,Y where the first XY is top left and the second XY is the
bottom RIGHT. These XY co-ordinates are PICK specific, i.e.
0,0 is the top left hand corner of the screen.If -1,-1 is passed as
first X,Y co-ordinates, window will be centered on the screen.

COLOURS The names of the colours required for foreground and/or
background e.g. ¢WHITE,RED ¢.

EFFECTS All parameters as follows are optional and comma separated :

 ¢SHADOW ¢

Shadow effect.

 ¢EXPLODE ¢ Bring window up with exploding effect.

 ¢NO CLEAR
¢

The text behind the window stays within the window.

 ¢SINGLE¢ Single line border around window.

 ¢DOUBLE¢ Double line border around window.

 ¢SINGLE
DOUBLE¢

Single line border at top and bot, Double sides.

 ¢DOUBLE
SINGLE¢

Double line border at top and bot, Single sides.

Click here        for an example.

PIX.OPEN.WINDOW Example

CALL PIX.OPEN.WINDOW ("5,5,40,10","RED,BLUE","SINGLE,SHADOW")

Will open a window on the screen, red text on a blue background 36 chars wide and 6 rows deep. The window will have a SINGLE
border around it and will have a shadow effect as well.

See also: PIX.CLOSE.WINDOW

Close a window

PIX.CLOSE.WINDOW is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CLOSE.WINDOW(OPTION)

Subroutine to close currently open window.

This subroutine will close the currently open window on the screen. If OPTION is not null, the window is still closed but is left behind
on the screen as text.

Send screen contents to DOS

PIX.SCREEN.DUMP is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.SCREEN.DUMP(OUTPUT.DEVICE)

HOSTACCESS can manipulate DOS printers and devices in many ways. This facility lets you send the current screen contents to
any DOS device or DOS file name.

OUTPUT.DEVICE Can be any name you want the screen dump to be sent
to, it could be LPT1, LPT2, COM1, COM2 if say you have
a printer on one of those devices or it could be a DOS file
name like, TEST.DOC, C:\DUMPS\SCREEN.DMP etc. If
null the device is left unchanged and the screen dump will
go to the current print device or file.

Freeze on

PIX.FREEZE.ON is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.FREEZE.ON

This subroutine is a clever little way of making screens, data etc. appear instantly to users.

This subroutine will suspend all updates to the current screen until the next FREEZE OFF. The hot-key ALT/U from HOSTACCESS
will actually show the screen so far and turn freeze off. This is useful if you are debugging code. There are no performance benefits
with this facility but the users perception of increased speed is amazing. Text is restored instantly when PIX.FREEZE.OFF is called.

If you call this routine to stop the user seeing things like compiles or batch jobs, it is recommended you periodically inform the user
that something is going on, or else he might become suspicious and suspect that the PICK system has hung, or worse still, reboot
his PC and go and make himself a cup of coffee!

Freeze off

PIX.FREEZE.OFF is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.FREEZE.OFF

This program instantly reveals the information to the current screen sent since the last FREEZE.ON.

Sets the screen mode

PIX.SCREEN.MODE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.SCREEN.MODE(CODE)

This program, when passed a parameter will set the current screen mode to the specified requirements. i.e. 132 columns or 50
lines. Some modes are only supported by certain VGA screens and or monitors. You need to ensure that you have specified the
correct VGA card/mode type from the HOSTACCESS Configure menu before attempting to change modes to/from 132 columns.

Changing modes only affects the current session, but also causes the current session to be reset as if you had just come into
HOSTACCESS, i.e. Colours, menus, selection boxes, etc., are all cleared from memory.

To preserve the current session before changing modes you should call PIX.PUSH.ENVIRONMENT before calling this routine. In
that way, your current session including the current screen mode (80/24 etc.) and colours, menus, etc., will be restored instantly with
a call to PIX.POP.ENVIRONMENT.

The following subroutine parameters need to be passed or will be returned accordingly:

CODE

Code Card Screen Display

0 VGA For 132/24 column screen. ONLY if your current PC
supports this screen mode will this work correctly.

1 ALL 80 x 24 screen

2 EGA 80 x 42 screen

3 VGA 80 x 49 screen

5 VGA 132 x 25 screen (see 132 note under mode 0)

6 ALL 80 x 25 screen

7 EGA 80 x 43 screen

8 VGA 80 x 50 screen

9 ALL 40 x 24 screen

10 ALL 40 x 25 screen

Note    All modes are supported under Windows, regardless of card type.

Menus

The following subroutines allow you to create and control menus.

Create and load a menu. PIX.LOAD.MENU

Activate pull down menus. PIX.GET.MENU.RESPONSE

Close menus. PIX.CLOSE.MENU

Program function keys. PIX.PROGRAM.FKEYS

SLOT number. PIX.GET.SLOT.NUMBER

Create and load a menu

PIX.LOAD.MENU is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.LOAD.MENU(MENU.NAME,MENU.TEXT, SINGLE.MENU.NO, MAIN.COLOURS, CHARACTER.COLOURS,
HIGHLIGHT.BAR.COLOURS, ERROR)

Menus are loaded into HOSTACCESS¢s memory by this program. Once loaded, the text need never be sent again. They remain
permanently in HOSTACCESS¢s memory for as long as HOSTACCESS is running. By activating and deactivating menus via
PIX.GET.MENU.RESPONSE and PIX.CLOSE.MENU, the menus appear and disappear instantly. Up to 50 menu sets can be
loaded into HOSTACCESS at any one time, containing up to 200 menus; each menu can contain up to 20 elements each.

Menus can now be cascaded from other menus, i.e. similar to HOSTACCESS ¢s own configuration menus. The first 8 menus
passed are loaded across the top of HOSTACCESS ¢s main screen. All other menus (9-200) automatically cascade that menu and
its options when that element is selected.

Call the PIX.GET.MENU.RESPONSE program to display the menu on the screen. To write to the host application screen after
getting a response back from menus, call PIX.CLOSE.MENU. You cannot update the host screen when menus are displayed.
MENUS are not removed automatically from the screen, allowing you to open a selection box, input boxes or help windows, etc., on
top of the menu. The following subroutine parameters need to be passed or will be returned accordingly:

MENU.NAME Name of the menu you want to load into, this
name is used to generate a valid menu no.
between 1 and 50 by searching
PIX.CONTROL.F file item PIX.MENU.NAMES
for the name.

MENU.TEXT Menu text. Each menu as one dynamic array,
each element as a multi-value. Any element
ending with "|n" will, when selected by the user,
cause HOSTACCESS to display menu ¢n ¢ as
a cascaded menu from that option. Cascaded
menus can be called from more than one higher
level menu, and cascades can call any of the
200 menus as well. If SINGLE.MENU.NO used
to load one menu only then MENU.TEXT should
only be a single dynamic array.

SINGLE.MENU.NO If numeric then MENU.TEXT is loaded into the
menus specified by SINGLE.MENU.NO only,
otherwise entire menu will be reloaded. This is
useful if you only want to change one menu ¢s
text out of the 200 rather than reload the lot.
Normally this will be null.

MAIN.COLOURS,
CHARACTER.COLOURS
and HIGHLIGHT.BAR.
COLOURS

Can for example be set to WHITE,BLACK for
WHITE foreground on BLACK background etc.
Main is the main box color, character is the
highlight char and bar is the selection/highlight
bar.

ERROR Returns 1 if fatal errors.

Activate pull down menus

PIX.GET.MENU.RESPONSE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.GET.MENU.RESPONSE(MENU.NAME, MENU.TEXT, MENU.PATH, PATH.TEXT, ELEMENT.TEXT, EXIT.KEY,
ERROR)

This program will activate one of the 50 menu sets loaded by PIX.LOAD.MENU and display the pull down menus on the screen and
wait for a user response.

The Home and End keys will move the highlight bar to the top and bottom of a Pop-Down Menu list. To select a menu option, the
user presses the Enter key when the highlighted element is the required option. Pressing the ESCape key at any point allows the
user to exit from the Pop-Down Menus or move back up a level if the current menu is a cascade from a previous one.

HOSTACCESS ¢s AiF handles all of the menu movement and underlying screen refreshes without any intervention or additional
code on the Host system. Once a user selects an option, AiF will send the full menu path for the selected Menu number and the
Element number to the Host system. It is a simple matter for the Host application to interrogate this response and determine which
option the user has chosen.

The following subroutine parameters need to be passed returned accordingly:

MENU.TEXT If passed with the data that was used to build current menu
then ELEMENT.TEXT will contain the text from
MENU.TEXT for the element number selected.
PATH.TEXT is also returned as a multi valued string for the
entire path of menus selected including any cascades. It is
not necessary for MENU.TEXT to be the same text as
loaded by PIX.LOAD.MENU. In fact, the text you load may
be variable to the users choice whilst that returned from
RESPONSE may be the fixed text which your program
checks for. This is how PIX.DB and PIX.EASY.ACCESS
work to allow you to change text for foreign users.

MENU.NAME Name of the menu you want to load into. This name is
used to generate a valid menu number between 1 and 50
by searching PIX.CONTROL.F file item
PIX.MENU.NAMES for the name.

This name should be one that you have previously used
when calling PIX.LOAD.MENU.

MENU.PATH Full menu path on which element was selected, multi-
valued as follows:

Menu no]option no {]menu no]option no...} etc.

Where the 3rd and subsequent multi-values represent the
path down any cascading menus.

ELEMENT.TEXT The text of the very last menu element that was selected.

PATH.TEXT Using MENU.PATH and MENU.TEXT, this variable is
returned as a multi-value of the strings of text relative to
the path the user went through to get through the menus.
i.e. it could be SORT]DICT]BY... etc.

EXIT.KEY A 2 character mnemonic is returned indicating which key
was depressed to exit the selection box, e.g. ES for
escape, CR for return, F1 for function key 1. Only exit keys
set by PIX.EXIT.KEYS will actually allow that exit key to
exit menus. A list of the 2 character mnemonics can be
found documented under HOSTACCESS¢s DOS Keyboard
Stacker.

ERROR Returned as 1 if fatal error occurs.

Click here        for an example.

PIX.GET.MENU.RESPONSE Example

The BASIC code below is an example to how to load a simple menu and process the user ¢s option.
* assign menu colors
MENU.COLOURS = 'BLUE,WHITE'
CHARACTER.COLOURS = 'RED,WHITE'
HIGHLIGHT.BAR.COLOURS = 'WHITE,RED'
*
* assign user text for menus, the] represents a multi-value
MENU.TEXT = ''
MENU.TEXT<1> = 'SELECT]Reports]Enquiry]Data Entry'
MENU.TEXT<2> = 'INFO]Company]Network]Users'
MENU.TEXT<3> = 'HELP]Access Commands]Verbs'
PATH.TEXT = ''
CALL PIX.LOAD.MENU("DEMO", MENU.TEXT,"",MENU.COLOURS, CHARACTER.COLOURS, HIGHLIGHT.BAR.COLOURS,
ERROR)
*
LOOP
 CALL PIX.GET.MENU.RESPONSE ("DEMO",MENU.TEXT,"",PATH.TEXT,
 ELEMENT.TEXT,EXIT.KEY,ERROR)
*
UNTIL EXIT.KEY EQ "ES" DO
*
* process each menu’s option (you may need to close the menu to update the screen) *
 MENU.NAME = PATH.TEXT<1,1>
 BEGIN CASE
*
 CASE MENU.NAME EQ "SELECT"
 BEGIN CASE
 CASE ELEMENT.TEXT EQ "Reports"
 GOSUB PROCESS.REPORTS
 CASE ELEMENT.TEXT EQ "Enquiry"
 CALL PIX.EASY.ACCESS("","")
 CASE ELEMENT.TEXT EQ "Data Entry"
 GOSUB GET.DATA
 END CASE
 CASE MENU.NAME EQ "INFO"
 GOSUB SHOW.INFO
 CASE MENU.NAME EQ "HELP"
 GOSUB SHOW.HELP
 END CASE
REPEAT
CALL PIX.CLOSE.MENU

Close menus

PIX.CLOSE.MENU is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CLOSE.MENU

This routine closes the currently open menus. It only removes the window and menus from the screen, which can easily be
reactivated/displayed again by calling PIX.GET.MENU.RESPONSE.

You should always call this routine if you have asked for a response from PIX.GET.MENU.RESPONSE and then wish to update the
host application screen. Otherwise HOSTACCESS will attempt to write any host text in current menu window!

Program function keys

PIX.PROGRAM.FKEYS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PROGRAM.FKEYS(KEY.DATA, FKEY.NO)

As well as supporting programmable function keys for any emulation that supports them, HOSTACCESS supports it own AiF
sequence to allow you to program them as well. This way, if you know a HOSTACCESS user is active, you can load the function
keys no matter what the emulation.

By default, if you have not loaded F keys from the application then the particular emulation ¢s default function key codes will be
active. Programming a function key then causes the programmed code to be sent to the host. Emptying the key then reverts the key
back to the emulation default.

Any one or all of the 48 Function Keys available in HOSTACCESS may be programmed by a host application to send character
sequences to the host as if they were entered from the keyboard.

These character sequences may consist of any ASCII character including control codes.

Control characters are entered as ^A,^B, or ^001, ^002 etc.

Use ^^ for the character ¢^ ¢.

For characters in the range 128 to 255 enter the three digit decimal value after a ¢^ ¢, e.g. ^128. (Any character may be entered in
this manner.)

Since PC keyboards do not always match terminal keyboards the following rules apply: -

1 - 10 F1 to F10
11 - 20 Shifted F1 to F10
21 - 30 Control F1 to F10
31 - 40 Alt F1 to F10

On AT compatible PCs, the 8 additional function key F11 and F12 combinations can be used as you wish. You may also program
additional keys, such as the arrow and edit keys.

For a full description of which keys can be programmed, please refer to the Developer ¢s Guide and the User Guide.

The following subroutine parameters need to be passed or will be returned accordingly:

KEY.DATA This may be a dynamic array where each array element will be
loaded into that key, i.e. KEY.DATA<3> is loaded into Fkey 3.

FKEY.NO If not null, it is assumed that KEY.DATA only contains one
string, this is then loaded into Function Key FKEY.NO. If null,
each function key will be loaded with the data corresponding to
its attribute number in the KEY.DATA dynamic array.

Click here    PIX.PROGRAM.FKEYS Example      for an example.

PIX.PROGRAM.FKEYS Example

CALL PIX.PROGRAM.FKEYS("WHO^M" :CHAR(254): "TIME^M","")

Will program functions keys F1 and F2 with WHO and TIME respectively.

Get SLOT

PIX.GET.SLOT.NUMBER is a BASIC subroutine that can be called from your applications as follows:
CALL PIX . GET.SLOT.NUMBER(SLOT.NAME, SLOT.NUMBER, SLOT.TYPE, ERROR)

This program is normally only called by MENUS and SELECTION BOX programs.

This program should be passed a menu name that you wish to use as your currently active menu. Since HOSTACCESS only allows
menu numbers, this program will return the next available number in SLOT.NUMBER. This number is derived from the
PIX.CONTROL.F file using a single item PIX.SLOT.NAMES. Complex applications may need this control record to be maintained on
a per port basis to allow for more than 50 menu/selection box environments per system.

The following subroutine parameters need to be passed or will be returned accordingly:

SLOT.NAME Any meaningful menu name that represents the
applications menu or selection box environment.

SLOT.NUMBER Returned value giving the number currently allocated to this
SLOT.NAME or if not already used, the next available
number is returned.

SLOT.TYPE The environment set that needs to be used, defined as
ONE of the following :

MENU

SELECTION.BOX

This name is used as a lookup in the PIX.CONTROL.F
file for the number.

ERROR Set to 0 if no error, 1 if error occurs.

Selection boxes

The following subroutines allow you to load and control selection boxes. A selection box is a scrolling window with a list of elements.
The user may scroll through this list and select any element within the list.

Load a selection box. PIX.LOAD.SELECTION.BOX

Activate a selection box. PIX.GET.SBOX.RESPONSE

Close a selection box. PIX.CLOSE.SELECTION.BOX

Load exit keys. PIX.EXIT.KEYS

Create and load a selection box

 PIX.LOAD.SELECTION.BOX is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.LOAD.SELECTION.BOX(SBOX.NAME, SBOX.TEXT, SBOX.TYPE, SBOX.HEADING, POSITION, WIDTH.DEPTH,
MAIN.COLOURS, CHARACTER.COLOURS, HIGHLIGHT.BAR.COLOURS, EFFECTS, ERROR)

Selection boxes are loaded into HOSTACCESS ¢s memory by this program. Once loaded, the text need never be sent again, they
remain permanently in HOSTACCESS ¢s memory for the duration HOSTACCESS is loaded in the PC. By activating and
deactivating selection boxes, by calling PIX.GET.SBOX.RESPONSE and PIX.CLOSE.SELECTION.BOX the user sees the selection
boxes instantly.

Selection boxes are a very powerful way of presenting multiple items/options to a user. HOSTACCESS will automatically create a
box around the selection if you require it, with any of the available HOSTACCESS effects.

Up to 50 selection boxes (of up to 32K each in size) can be sent to HOSTACCESS and then by simply calling the RESPONSE
program, the selection box is displayed on the screen in the chosen window.

The following subroutine parameters need to be passed or will be returned accordingly:

SBOX.NAME Name of the selection box you want to load into, this
name is used to generate a valid selection box number
between 1 and 50 by searching the PIX.CONTROL.F
file, item SELECTION.BOX.port.account.SLOT (where
port is a port number such as 14,and account is an
account ID such as ACCT) for the name.

SBOX.TEXT Array list of items to load into the selection box. This can
be dynamic or multi-valued but not both

SBOX.TYPE If value is 1 then selection box type will be NOVELL
style. If 0 or null then a normal selection box is used.

SBOX.HEADING The heading text to appear at the top of the selection
box.

POSITION X,Y screen co-ordinates, from 0,0, of the top left hand
corner of the window to contain the selection box. If
passed as -1,-1 then the selection box will be displayed
below the last HOSTACCESS menu/selection box option
selection. This gives the effect of cascading down below
previous menus/boxes.

WIDTH.DEPTH e.g. 20,10 gives a selection box size to
display a max. of 10 elements at any one
time within a width of 20 bytes. If both or
either are 0 then HOSTACCESS will
calculate the maximum necessary or that
will fit on the screen.

MAIN.COLOURS,
CHARACTER.COLOURS and
HIGHLIGHT.BAR.COLOURS

The names of the colors required for each
part of the selection box. May be null (in
which case current screen defaults used).
Can for example be set to WHITE,BLACK
for WHITE foreground on BLACK
background etc. Main is the main box
color, character is the highlight char and
bar is the selection/highlight bar.

EFFECTS SINGLE,DOUBLE,SHADOW,EXPLODE,
comma delimited as one string.

ERROR Returns 1 if fatal errors.

Activate a selection box

PIX.GET.SBOX.RESPONSE can be called from your applications as follows:
CALL PIX.GET.SBOX.RESPONSE (SBOX.NAME, SBOX. TEXT , USE.WINDOW, SBOX.ELEMENT.NO,
SBOX.ELEMENT.TEXT, EXIT.KEY, ERROR)

This activates a previously loaded selection box loaded by PIX.LOAD.SELECTION.BOX. If not already on the screen, this program
will put it there. When a user chooses an option, this program returns the option number    chosen as well as the text from
SBOX.TEXT for that array position.

You should always call PIX.CLOSE.SELECTION.BOX if you wish to write to the screen after getting a response from the selection
box. Selection boxes are not removed automatically.

The following subroutine parameters need to be passed or will be returned accordingly:

SBOX.NAME Name of the selection box you want to use, this name is
used to generate a valid selection box number between
1 and 50 by searching PIX.CONTROL.F file item
PIX.SELECTION.BOX.NAMES for the name. This name
should be one that you have previously used when
calling PIX.LOAD.SELECTION.BOX.

SBOX.TEXT Can be null but if used, ELEMENT.TEXT will be returned
with the value in array position ELEMENT.NO. This
saves your calling program having to work out what
selection was made. If passed with the data used to
build current menu, SBOX.ELEMENT.TEXT contains the
text from MENU.TEXT for the element selected. It is not
necessary for MENU.TEXT to be the same text as
loaded by PIX.LOAD.MENU. The text you load may be
variable to the users choice while the return from
RESPONSE may be the fixed text your program checks
for. This is how PIX.DB and PIX.EASY.ACCESS work to
allow you to change text for foreign users.

USE.WINDOW If true, then display selection box in currently open
window, otherwise let HOSTACCESS open one for you.

SBOX.ELEMENT.NO Returned as the number of the element selected

SBOX.ELEMENT.TEXT Returned as the text contained within the selected
element.

EXIT.KEY A 2 character mnemonic is returned indicating which key
was depressed to exit the selection box, e.g. ES for
escape, CR for return, F1 for function key 1. Only exit
keys set by PIX.EXIT.KEYS will actually allow that exit
key to exit selection boxes. A list of the 2 character
mnemonics can be found documented under
HOSTACCESS ¢s DOS Keyboard Stacker.

ERROR Returned as 1 if fatal error.

Close a selection box

PIX.CLOSE.SELECTION.BOX is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CLOSE.SELECTION.BOX

This routine closes the currently open selection box. It only removes the window and text from the screen, which can easily be
reactivated and displayed again by calling the subroutine PIX.GET.SBOX.RESPONSE.

You should always call this routine if you have asked for a response from PIX.GET.SBOX.RESPONSE and then wish to update the
host application screen. Otherwise HOSTACCESS will attempt to write any host text in this selection box window.

Loading exit keys

PIX.EXIT.KEYS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.EXIT.KEYS(EXIT.KEYS)

The EXIT.KEYS subroutine is used to notify HOSTACCESS which additional keys should cause an exit from any one of the
following AiF functions:

WINDOW.EDITOR

FIELD/BOX INPUT

PULL DOWN MENUS

SELECTION BOXES

Any previous exit keys will be disabled, i.e. they are not additive.

This routine should be called before getting a response from a menu or selection x. You could make the ¢F1 ¢ function key cause
an exit from the menu and then perhaps assume the user wants help on the menu option that was highlighted. It could be ¢F10 ¢ to
delete the current highlighted option and so on.

Virtually any key can be set as an exit key, including single characters or special PC keys like ¢HM ¢ home etc.

The following subroutine parameters need to be passed or will be returned accordingly:

EXIT.KEYS Can contain a string of 2 character mnemonics as
used in and documented under HOSTACCESS ¢s
DOS Keyboard Stacker. E.g. CR is carriage return, F1
for F1, F0 for F10, DA for down arrow. If you want any
ASCII characters to be exit keys then enclose these
in quotes, e.g.    F1F2 ¢A? ¢ will give F1,F2,A and ?
exit keys.
ES, escape is always an EXIT key and cannot be
disabled, as is CR, carriage return.
Note that alphanumeric characters as exit keys will be
ignored by the box and window editors for obvious
reasons, they are OK for windows and menus though.

Click here        for an example.

PIX.EXIT.KEYS Example

CALL PIX.EXIT.KEYS("F1F2F3")

Will allow functions keys F1,F2,F3 to exit from MENUS, LINE EDITOR, BOX EDITOR, WINDOW EDITOR and SELECTION boxes.
Any other exit keys are cleared.

Colours

The following subroutines allow you to set and configure colours.

Set ANSII colours for printing PIX.GET.COLOUR.CODES

Sets    colours PIX.SET.COLOUR

Change colours. PIX.COLOUR.CONFIG

Set ANSII colours for printing

PIX.GET.COLOUR.CODES can be called from your applications as follows:
CALL PIX.GET.COLOUR.CODES(COLOURS, OPTIONS, COLOUR.CODE)

Pass this routine the colours you want and set OPTIONS to D for default and/or F for flashing and COLOUR.CODE will return the
colour codes that can be printed to achieve the desired effect. i.e. 1;37;44;5 for flashing lightwhite on blue.

The following parameters will need to be passed or will be returned accordingly:

COLOURS Should be set to
{LIGHT}FOREGROUND,BACKGROUND. If either color is
invalid it will be set to white.

If COLOURS is null then COLOUR.CODE will be set to
null.

OPTIONS Can be set to null or ¢D ¢ and/or ¢F ¢, where ¢D ¢efault
screen colors and ¢F ¢lashing attribute on.

COLOUR.CODE Is returned as the ANSII code required to generate the
specified colors. To activate these colors within the calling
program, simply wrap COLOUR.CODE with the ANSI start
and end sequences and PRINT it.

Click here        for an example.

PIX.GET.COLOUR.CODES Example

To print text with the following colours, white on red, use the following:

TEXT = "Good Morning !"
CALL PIX.GET.COLOUR.CODES ("WHITE,RED","", COLOUR. CODE)
PRINT CHAR(27):"[=":COLOUR.CODE:"m":TEXT

To set the screen default foreground and background to blue on white (light gray), use the following:

CALL PIX.GET.COLOUR.CODES("BLUE,WHITE","D",COLOUR.CODE)
PRINT CHAR(27):"[=":COLOUR.CODE:"m":
PRINT @(-1): ;* clear screen to reset colours.

Set colours

 PIX.SET.COLOUR is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.SET.COLOUR(COLOURS, OPTIONS)

Setting colours could not be easier than with this little routine. Rather than have to work out what ANSI colour code number is given
to BLUE, RED etc., just pass the text of the colour you require.

This program then sets the colour specified on the screen for you. If you like, you can specify an option to tell HOSTACCESS that
the colour specified should be used as the default from now on.

The following subroutine parameters need to be passed or will be returned accordingly:

COLOURS The names of the colors required for foreground and/or
background. For example, for a Yellow foreground on Black
Background set COLOURS = ¢YELLOW,BLACK ¢; for a Light
red foreground on a green background set COLOURS =
¢LIGHTRED,GREEN ¢.

OPTIONS Can be ¢D ¢, ¢F ¢ or both.

To set to current default, i.e. for all screen clears and clear to end of line, send a D in OPTIONS.

To set the foreground color to flashing, send an F in OPTIONS.

Change colours

PIX.COLOUR.CONFIG is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.COLOUR.CONFIG(COLOUR.PART, COLOUR1, COLOUR2,    COLOUR3, COLOUR4, ERROR)

This subroutine enables programs to allow users to change the colours of application controlled AiF pop-down menus, selection
boxes, windows and even the current screen colours.

To see this in action, you should select the menu or window colours option from the relevant menu in the DB - A DATA BASIC
Programmer ¢ s Utility     routine (programmer ¢s toolkit facility).

The following subroutine parameters need to be passed or returned accordingly:

COLOUR.PART Tells the subroutine which "object" should have its colors
changed. Specify this "object" as one of the following :

MENU

SELECTION.BOX

WINDOW

SCREEN

Free format text (no more than 20 characters)

A simulated screen together with the object, say a pop-down
menu, will be displayed showing the colours as passed into
the subroutine. If you specify this parameter as "free format
text", a simulated window containing this text will be
presented. Only the colours of this text will be changed.

COLOUR1 Specify the foreground and background colour for the menu
or selection box text and box (including frame). May be null,
click here        for defaults.

COLOUR2 Specify the foreground and background colour for the
selection character, as used within a menu or selection box.
May be null, click here     for defaults.

COLOUR3 Specify the foreground and background colour for the
highlight bar as used within a menu or selection box. May be
null, click here        for defaults.

COLOUR4 Specify the foreground and background colour for the
underlying screen. May be null, for defaults see below.

ERROR On return, will be set to 1 if an error occurs, 0 if no errors.

Click here        for further information.

PIX.COLOUR.CONFIG Notes

1. Defaults

All the colours specified in the COLOUR1-4 parameters may be null. The
appropriate default will be taken from a multi-value 1 to 4 in attribute 7 in the
record PIX.COLOUR.CONFIG in the PIX.TEXT.F. You may modify these
default colours as required, but please remember to keep all of the colour
names in capitals and in ENGLISH. (The same applies to attribute 4 of this
record). All of the other text, that appears when PIX.COLOUR.CONFIG is
run, may be modified by translating the text in the PIX.TEXT.F file record, as
appropriate to the language you require.

2. Using PIX.COLOUR.CONFIG

This subroutine has been written to be as easy to use as possible. It may
even be presented in other languages by translating the text in the
PIX.TEXT.F file.

Help is available to users by pressing the function key F10. The display of
the "object" (menu, selection box, etc.,) being colour configured changes as
the user selects a different colour.

3. Colour Parameters

The parameters COLOUR1, COLOUR2, COLOUR3 and COLOUR4 should
be specified as pairs of foreground and background colours in their
ENGLISH notation. For example, to specify a highlight bar colour of white
text on a red background, specify the COLOUR3 parameter as :

WHITE,RED

This subroutine will return the colours selected by the user (or the defaults, if
null parameters passed in) in each of these parameters in the same notation.

Names of colours may be specified as any of the following :

BLACK, RED, GREEN, BROWN, BLUE, MAGENTA, CYAN, WHITE, GREY
(GRAY), YELLOW

For intense (light) foreground colours, prefix the colour name with "LIGHT",
e.g. LIGHTBLUE. Note that LIGHTBROWN is the same as YELLOW and
that you may specify YELLOW directly.

Graphics

The following subroutines enable you to use graphical features:

Create an input box PIX.BOX.INPUT

Centre text. PIX.CENTRE.TEXT

Draw a box. PIX.DRAW.BOX

Draw a line. PIX.DRAW.LINE

Create a single line input. PIX.LINE.INPUT

Display a message line. PIX.MESSAGE.LINE

Display a message window. PIX.MESSAGE.WINDOW

Creates a window for text editing. PIX.WINDOW.EDITOR

Displays title text. PIX.WINDOW.TITLE

Create an input box

PIX.BOX.INPUT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.BOX.INPUT(STRING, POSITION, SIZE.BOX, SIZE.INPUT, VALIDATION, CLEAR.MODE, EFFECTS, TITLE,
EXIT.KEY)

Box Input enables host applications to pop up an input box anywhere on the screen and request user input. This input may be
restricted to only certain types of input and this saves unnecessary validation by the host.

This very powerful routine effectively gives ALL of the benefits of single character inputs, more features and of course with NO
burden on host ¢s performance. Hence it is excellent across slow links.

User input is NOT constrained to the box ¢s width. Text input may exceed the width of the box and HOSTACCESS will indicate that
additional text exists by displaying appropriate arrow symbols. The maximum length for the text that can be input should be
specified by the host application.

The input box itself may be enhanced with selected frame styles and/or title. Once the user has completed input, the box will
disappear and the underlying screen be instantly restored.

The following subroutine parameters need to be passed or will be returned accordingly:

STRING Data to be input can be null or an existing string. On return,
it contains the string input (or modified) by the user.

POSITION COL,ROW where to put box, PICK co-ordinates i.e. 0,0 are
valid.

SIZE.BOX Width of box, may be smaller than SIZE.INPUT

SIZE.INPUT Max length of data allowed to be input, may exceed
SIZE.BOX

VALIDATION Restrict input    to certain type of data as follows: -

 ¢INTEGERS ¢

 ¢NUMERIC ¢

 ¢ALPHA ¢

 ¢ALPHANUMERIC ¢

 ¢HEX ¢, only 0-9 and A-F allowed

 ¢HIDDEN ¢, useful for passwords etc.

Any other value will result in no validation being applied.

CLEAR.MODE If CLEAR.MODE is 0 then any existing string that is
passed will be displayed and insert mode will be enabled.
The only difference with CLEAR.MODE set to 1 is that if
the user starts typing text then the first character he inputs
replaces the string. If the user uses arrow keys etc. as the
first input, the string is left for insert mode.

CLEAR.MODE as 1 is similar to most DOS applications
input.

EFFECTS All the following parameters are optional and comma
separated e.g. ¢SHADOW,EXPLODE,SINGLE ¢.

 ¢SHADOW ¢ Shadow effect

 ¢EXPLODE ¢ Bring window up with exploding
effect

 ¢SINGLE ¢ Single line border around
window

 ¢DOUBLE ¢ Double line border around
window

 ¢SINGLE DOUBLE ¢ Single line border at top and bot,
Double sides

 ¢DOUBLE SINGLE ¢ Double line border at top and
bot, Single sides

TITLE Optional text to appear as heading in input box

EXIT.KEY A 2 character mnemonic is returned indicating which key
was depressed to exit the input, e.g. ES for escape, CR for
return, F1 for Function Key 1. Only exit keys set by
PIX.EXIT.KEYS will actually allow that exit key to exit input
boxes. A list of the 2 character mnemonics is found
documented under HOSTACCESS ¢s DOS Keyboard
Stacker.

Click        here for an example.

PIX.EXIT.KEYS.
PIX.LINE.INPUT.
PIX.WINDOW.EDITOR.

PIX.BOX.INPUT Example

CALL PIX.BOX.INPUT(TXT,"5,5",20,50,"ALPHA",0,"SINGLE",DESC,XKEY)

Will draw a box at X,Y pos 5,5 and 20 characters wide with a SINGLE border. DESC will be displayed in the heading of the box. Any
text in variable TXT will be displayed in the box and can be amended to include only ALPHA characters up to 50 characters in
length. The exit key, normally ¢CR ¢ is returned in XKEY and TXT is returned containing the final text that was in the box.

Centering text

PIX.CENTRE.TEXT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CENTRE.TEXT(START.ROW, CENTRE.TEXT)

This program tells HOSTACCESS to center CENTRE.TEXT on START.ROW line in the current window, or if there is no window
open, then in the center of the screen.

If CENTRE.TEXT is a dynamic array then each line will be centered on subsequent lines, starting at

For PICK compatibility, START.ROW starts at 0.

The following subroutine parameters need to be passed or will be returned accordingly:

START.ROW The start row number on which the text will be centered.

CENTRE.TEXT The string(s) you want centered on the screen. This can be
a dynamic array of strings which will be centered on each
subsequent row starting from START.ROW.

Create a single line input

PIX.LINE.INPUT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.LINE.INPUT(STRING, LENGTH, EXIT.KEY)

This subroutine provides single line input facilities for existing host applications. This routine takes, from the current cursor position
for a length of LENGTH all characters on the screen. The user can change the content of the text using the local (PC) edit keys, e.g.
ins/del/home/end/arrow keys etc. When the user selects an EXIT.KEY (see PIX.EXIT.KEYS) or presses ESCcape or RETURN,
STRING is returned with the contents of the specified part of the screen at that point.

This program differs from the program PIX.BOX.INPUT in the sense that all an application effectively has to do to use this facility is
replace something like this:

PRINT @(10,10): ; INPUT ADDRESS1,30:
With:

PRINT @(10,10):
IF ON.TERMITE THEN
 CALL PIX.LINE.INPUT (ADDRESS1, 30, EXIT.KEY)
END ELSE
 INPUT ADDRESS1,30:
END

This gives full line editing facilities. You can modify or clear ADDRESS1 which may already be on the screen. For even more
powerful inputs, you should look at PIX.BOX.INPUT. This allows you to put flashing boxes around inputs and to pass it the string to
amend etc.

The following subroutine parameters need to be passed or will be returned accordingly:

STRING Returned string with the value of exactly what was on the
screen from current cursor position for length LENGTH.

LENGTH From the current cursor position, start editing LENGTH
characters and only allow that max. LENGTH to be entered.

EXIT.KEY Key pressed, e.g. ¢CR ¢, ¢ES ¢, ¢F1 ¢ to exit input. See
PIX.EXIT.KEYS for more information

Example:
CALL PIX.LINE.INPUT(STRING,10,EXIT.KEY)

From the current cursor position, take the 10 characters on the screen and allow full line editing input on them. When the user
presses an EXIT.KEY, say <ENTER>, then STRING is returned with the amended 10 characters. EXIT.KEY is returned to the caller as
well to indicate the key that key was pressed. Trailing spaces are not returned.

Draw a box

PIX.DRAW.BOX is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DRAW.BOX(POSITION, COLOURS, EFFECTS)

This program will draw any specified box on screen at the position specified by the calling program with any colour combination and
with any of the box effects.

If you specify a SINGLE or DOUBLE border then the border is put around the box and the box itself is the size you specify.

The following subroutine parameters need to be passed or will be returned accordingly:

POSITION X,Y,X,Y where the first XY, is top left and the second XY is the
bottom right. These XY co-ordinates are PICK specific i.e., the
top left-hand corner is co-ordinate 0,0.

If -1 passed as the first XY co-ordinates, box will be centered
in the currently open window or screen.

COLOURS ¢foreground,background ¢, e.g. ¢WHITE,RED ¢.

EFFECTS All parameters as follows are optional and comma separated:

 ¢SHADOW¢ Shadow effect.

 ¢EXPLODE¢ Bring box up with exploding effect.

 ¢SINGLE¢ Single line border around box.

 ¢DOUBLE¢ Double line border around box.

 ¢SINGLE DOUBLE¢ Single line border at top and bottom,
Double sides.

 ¢DOUBLE SINGLE¢ Double line border at top and bottom,
Single sides.

Example:
CALL PIX.DRAW.BOX("5,5,40,10","RED,WHITE","SINGLE,SHADOW")

Will draw a box on the screen, red text on a white background 35 chars wide and 5 deep. The box will have a SINGLE border
around it and will have a shadow effect as well.

Draw a line

PIX.DRAW.LINE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DRAW.LINE(POSITION, COLOURS, EFFECTS)

Draws a line or frame in the specified colour and type between the two points specified by POSITION. A line can either be horizontal
or vertical. HOSTACCESS also provides intelligent merging of lines to insert the correct tees and crosses etc. If the co-ordinates
passed in position do not match to draw a line, a frame will be drawn. E.g. 10,10,20,20 will draw a frame 11 deep by 10 wide from
10,10. This    differs from drawing a box with PIX.DRAW.BOX in the sense that you cannot fill or have effects on a frame. Equally
you cannot merge lines when using PIX.DRAW.BOX, as you can here.

The following subroutine parameters need to be passed or will be returned accordingly:

POSITION X,Y,X,Y where the first XY, is the starting co-ordinates for the
line or frame & the 2nd, the end co-ordinates. These XY co-
ordinates are PICK specific, i.e. 0,0 is the top left hand corner
of the currently open window or screen.

If either pair of XY are -1 then the line co-ordinates will match
the dimensions of the currently active window/screen. For
example, to draw a box from 10,10 to the bottom right on a full
80,24 screen send ¢10,10,-1,-1 ¢.

COLOURS ¢foreground,background ¢, e.g. ¢WHITE,RED ¢.

EFFECTS Comma delimited with no spaces. Line type :

 ¢SINGLE ¢ Single line

 ¢DOUBLE
¢

Double line

 ¢MERGE ¢ Merge the line with any other on screen, great for
joining lines, boxes etc., without having to worry
about tees and crosses etc.

Let HOSTACCESS do the hard bit for you, e.g.
just specify ¢DOUBLE,MERGE ¢.

Example:
CALL PIX.DRAW.LINE("5,5,75,5","RED, WHITE","SINGLE,MERGE")

Will draw a single line on the screen at row 5, 70 characters long. If any other lines cross this line on the screen then the relevant
tee and cross bars are generated to make the line MERGE.

Display a message line

PIX.MESSAGE.LINE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MESSAGE.LINE(MESSAGE,COLUMN,COLOURS,OPTIONS)

This subroutine allows you to print to the system message line regardless of what emulation you are running.

This program will display a given message on the system message line in any given colour at a specified column. Options are
available to clear the line first (otherwise it will print on top of any existing text), and also to reset the status line back to the current
status.

The following subroutine parameters need to be passed or will be returned accordingly:

MESSAGE Message text, maximum length should be SCREEN WIDTH-
COLUMN.

COLUMN If not null specifies starting column for message

COLOURS The names of the colors required for foreground and/or
background, e.g. WHITE,BLUE or RED,WHITE, etc.

OPTIONS F,C,R or even all 3 together, no commas needed where:

F for flashing foreground.

C to clear any message on the status line first.

R will restore status line with main HOSTACCESS status line if not
previously switched off from HOSTACCESS ¢s Configure menu.

Display a message window

PIX.MESSAGE.WINDOW is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MESSAGE.WINDOW(COLOURS, EFFECTS, TEXT)

This subroutine is used by some of the PICK HOSTACCESS programs. If you pass a dynamic array of TEXT and specify the
COLOURS and EFFECTS, this routine will display that text, centered on the screen in a window.

The window will be left OPEN on the current screen, your application may want to close it with the PIX.CLOSE.WINDOW
subroutine. You might want to copy this program and use it as a template to build your own help programs etc.

The following subroutine parameters need to be passed or will be returned accordingly:

COLOURS The names of the colors required for foreground and/or
background e.g. GREEN,BLACK or WHITE,BLUE or
YELLOW,WHITE etc.

EFFECTS Any permutation of SHADOW, EXPLODE, SINGLE, DOUBLE,
SINGLE DOUBLE etc. Full details in PIX.OPEN.WINDOW
subroutine.

TEXT Dynamic array containing text you want in the WINDOW.

Create a window for text editing

PIX.WINDOW.EDITOR is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.WINDOW.EDITOR(POSITION, COLOURS, EFFECTS, STRING, OPTIONS, EXIT.KEY)

The AiF Window Editor enables host applications to pop up an input window (of one or more lines) anywhere on the screen and
request user input. The user may maneuver around the text within the window using all of the available PC based keys to insert,
delete and add text at fast PC speeds. User input is constrained by the window ¢s width and depth, i.e. no scrolling is available.

This facility acts like a mini wordprocessor, all of the hard work is done by HOSTACCESS. It is very useful for address line inputs,
additional information, statements, etc.

The following subroutine parameters need to be passed or will be returned accordingly:

POSITION X,Y,X,Y where the first XY is top left and the second XY is the
bottom RIGHT. These XY co-ordinates are PICK specific, i.e.
0,0 is the top left hand corner of the screen.

If -1 passed as first co-ordinates, window will be centered in the
screen.

COLOURS The names of the colors required for the foreground and/or

background, e.g. ¢WHITE,RED ¢.

EFFECTS All parameters as follows are optional and comma separated :
 ¢SHADOW ¢ Shadow effect

 ¢EXPLODE ¢ Bring window up with exploding effect

 ¢NO CLEAR ¢ The text behind the window stays
within the window

 ¢SINGLE ¢ Single line border around window

 ¢DOUBLE ¢ Double line border around window

 ¢SINGLE DOUBLE ¢ Single line border at top and bottom,
Double sides

 ¢DOUBLE SINGLE ¢ Double line border at top and bottom,
Single sides

STRING Dynamic array containing start string to store in window, if any   
of any dynamic arrays exceed the size of the window then these
will be truncated.

STRING will be returned equally as a dynamic array for each
line from the window, irrespective of what exit key that was
used. It is up to the application ¢s responsibility to examine
EXIT.KEY and take appropriate action.

OPTIONS The following options are available:

0 When leaving window editor, close window automatically
and refresh user screen.

1 Close window but leave the window on the screen. Maybe
useful to save redisplaying address lines etc.

2 Leave window on screen and DO NOT close, it is up to the
caller to issue call to PIX.CLOSE.WINDOW.

EXIT.KEY A 2 character mnemonic is returned indicating which key was
depressed to exit the editor e.g. ES for escape, CR for return,
F1 for function key, etc. Only exit keys set by PIX.EXIT.KEYS
will actually allow that exit key to exit window editor. A list of the
2 character mnemonics can be found documented under
HOSTACCESS ¢s DOS Keyboard Stacker.

Click here        for an example.

PIX.WINDOW.EDITOR Example

CALL PIX.WINDOW.EDITOR("5,5,75,10","RED,WHITE","SINGLE",
REC,2,EXIT.KEY)

will open a window on the screen 6 lines deep and 71 columns wide. A single border will be put around the window and the colour
will be RED text on a WHITE background. The dynamic array REC will be displayed in the window, 1 array element = 1 line of text.
The user will then be able to ¢mini wordprocess ¢ the text. When the user presses an exit key then the ¢2 ¢ tells this routine to
close the window. REC is returned containing the amended text.

Display title text

PIX.WINDOW.TITLE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.WINDOW.TITLE(TITLE.TEXT, COLUMN, COLOURS, OPTIONS)

This program will display any given text in either the heading or footing of the currently open window, as long as the window has a
border. Any existing title in the top or bottom of the window will be replaced by TITLE.TEXT.

The following subroutine parameters need to be passed or will be returned accordingly:

TITLE.TEXT Heading or footing text depending on    text depending on
option setting.

COLUMN If null text is centered otherwise starts at COLUMN.

COLOURS The names of the colors required for foreground and/or
background, e.g. ¢WHITE,RED ¢.

OPTIONS ¢F ¢ for footing or ¢H ¢ for heading.

Displaying a Windows image

PIX.DISPLAY.IMAGE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DISPLAY.IMAGE(IMAGE.ID, POSITION, POSITION2, SCALE, OPTIONS, EXIT.KEY)

This program will display a PCX image file on top of, or alongside the host application screen at the specified position. The image
may also be displayed reduced in size. It is possible to display multiple images on the screen at the same time by calling this routine
consecutively, without displaying anything else on the screen in between calls. HOSTACCESS will display the image and wait for
user input. The calling application should wait on input and when the user presses a key the images will disappear and the
keystroke sent to the host program waiting on input.

You should not write to the screen or use HOSTACCESS menus, DOS gateway, etc., whilst images are on the screen.

If you specify the S option, users can pan through documents such as contracts, invoices, legal forms, poll tax forms and so on. Use
HOSTACCESS to display incredibly high quality colour or monochrome images alongside any of your host applications by simply
calling this subroutine.

Click here        for a description of the parameters.

PIX.DISPLAY.IMAGE parameters

The following are the parameters for the PIX.DISPLAY.IMAGE subroutine:
CALL PIX.DISPLAY.IMAGE(IMAGE.ID, POSITION, POSITION2, SCALE, OPTIONS, EXIT.KEY)

IMAGE.ID HOSTACCESS will display the PCX file image with the
DOS name IMAGE.ID, the DOS extension does not have
to be specified. i.e. if IMAGE.ID is C:\IMAGES\HOUSE or
C:\IMAGES\PEOPLE\000192.PCX will both display the
image in the relevant DOS file, HOUSE.PCX or
000192.PCX.

POSITION X,Y position from (0,0) to (nn, nn) pixels which determines
the position to display top left hand corner of image relative
to the chosen screen resolution.

POSITION2 X2,Y2 position which determines the pixel position to
display bottom right hand corner of image.

SCALE The size of the image being displayed as a percentage of
the original image size. E.g. normal size is 100, half size is
50, quarter size is 25, double size is 200, etc.

OPTIONS May be one of the following :

 ¢M ¢ Tells this routine that MORE images are going to be
displayed on the same screen. This stops this routine
waiting on INPUT and EXIT.KEY will be returned as null.
You should immediately call this routine again with the next
image information that you want display. The last image
should not use the ¢M ¢ option and HOSTACCESS will
then wait for user INPUT and return EXIT key with the text
pressed.

 ¢C ¢ Tells this routine to CLEAR the host screen before
displaying the image first. i.e. do not overlay the image on
top of the host screen. Useful and faster for instance if you
are displaying a full screen image. (early HOSTACCESS
versions will always clear the screen before displaying the
first image).

 ¢B ¢ For backwards compatibility. Uses the older
HOSTACCESS 2.0+FSI "_95" escape sequence to display
images. SCALE should then be on a number 1-5 where 2
is half the size etc.

 ¢S ¢ Enables scrolling (or panning) of an image within a
window.

 ¢R ¢ Prevents resetting of the image screen - i.e. leaves the
image on the screen.

EXIT.KEY Will return a two character mnemonic exit key which the
user used to exit the display of the LAST image. i.e. ¢ES ¢
or ¢CR ¢ if the user pressed ESCAPE or <RETURN>
respectively.
These mnemonics are defined under HOSTACCESS ¢s
DOS Keyboard stacker. You can easily and quickly load
Exit Keys by calling the PIX.EXIT.KEYS subroutine. Note if
you have defined single character exit keys, such as ¢X ¢
for example, this will be returned as space followed by the
exit key (i.e. as ¢ X ¢).
EXIT.KEY will be returned as NULL if the ¢M ¢ (more)
option has been used.

Example
CALL PIX.DISPLAY.IMAGE("E:\CARS\BMW","0,0","50","",EXIT.KEY)

This example displays a colour photograph stored in the PCX file BMW.PCX in top left of the screen at half the size it is stored at.

Mouse control

Detect a mouse driver. PIX.MOUSE.AVAILABLE

Activates the mouse. PIX.MOUSE.ON

Turns on mouse reporting. PIX.MOUSE.RESPONSE

Turn off mouse event reporting. PIX.MOUSE.OFF

Mouse test program. PIX.MOUSE.TEST

Detect a mouse driver

PIX.MOUSE.AVAILABLE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MOUSE.AVAILABLE(AVAILABLE)

This program returns a 1 or 0 value in the variable AVAILABLE, depending upon whether HOSTACCESS can detect that a MOUSE
driver has been loaded on the PC. 1 is always returned in HOSTACCESS for Windows.

Activate a mouse

PIX.MOUSE.ON is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MOUSE.ON(MONITOR.MOUSE.EVENTS)

This program activates the MOUSE on the PC for use with HOST applications. Turning on the mouse still allows keyboard input
through. Applications can detect if the mouse has been pressed by checking for an STX followed by the text ¢MS ¢ followed by
carriage return. If any other input comes through the input buffer then it can be processed in the normal way.

This program does not return the response type from the mouse, it only activates it. There is a program called
PIX.MOUSE.RESPONSE that can be called but you may wish to integrate the logic around your own INPUT statements. It is nice
and easy, so you should have no problems.

MONITOR.MOUSE.EVENTS, should be a string containing the words, LEFT, RIGHT, CENTRE, ALL and/or CONTINUOUS. This
tells HOSTACCESS that when any of the specified MOUSE buttons have been depressed, a response should be sent to the HOST.
You can specify any or all of the options in the string using comma delimiters, e.g. if MONITOR.MOUSE.EVENTS contains
"LEFT,CENTRE" then HOSTACCESS will not send a response if the RIGHT button is clicked but will if the left or center ones are
pressed.

Passing the CONTINUOUS parameter causes HOSTACCESS to send a response back to the host every time the MOUSE is
moved whilst one of the specified mouse buttons is depressed. This can be used by applications that need to know where the
MOUSE is at any given time. This should be used with caution since lots and lots of inputs will occur while the mouse button is held
down.

Turn on mouse event reporting

PIX.MOUSE.RESPONSE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MOUSE.RESPONSE(RESPONSE, BUTTON, XCORD, YCORD)

This program will return the response from the mouse when one of the selected buttons has been pressed or if the button is being
continuously held down. These options are selectable when turning on the MOUSE, see PIX.MOUSE.ON.

To match most PICK systems, this routine will subtract 1 from the X and Y co-ordinates, i.e. assuming start row/col is 0,0.

The following subroutine parameters need to be passed or will be returned accordingly:

RESPONSE Contains the text string as input by the user, if the mouse
was not used. RESPONSE will be NULL if MOUSE used,
otherwise keyboard input.

BUTTON Button will return a code from 0 to 7 which have the
following meaning:

0 Button(s) released.

Only if continuously monitoring the mouse button, does this
value get returned. It is only returned when any or all of the
buttons are released.

1 Left Button depressed.

2 Right Button depressed.

3 Left and Right Buttons depressed.

4 Centre button depressed.

5 Left and Centre buttons depressed.

6 Right and Centre buttons depressed.

7 Left and Right and Centre buttons depressed.

In most cases, your calling routine just needs to check for
a negative BUTTON variable to ensure detecting that the
MOUSE has not been used.

If BUTTON is -1 then the user must have pressed return
from the keyboard and thus no MOUSE response will be
valid.

XCORD, YCORD Will be set to X,Y both minus one to match PICK assuming
top left is 0,0 instead of the ANSI standard 1,1.

Both of these will be -1 if user has used the keyboard
instead of the MOUSE.

Click here        for an example.

PIX.MOUSE.RESPONSE Example

CALL PIX.MOUSE.RESPONSE(RESPONSE,BUTTON,XCORD,YCORD)

Make sure you have used PIX.MOUSE.ON first.

Will, if the mouse is active, wait until the mouse button has been pressed and return in XCORD and YCORD the X,Y position of the
mouse cursor when a button was pressed. BUTTON is returned as a code for whichever mouse button has been pressed. If
BUTTON is -1 then RESPONSE will contain the text string that the user must have typed in and pressed return to.

Turn off mouse event reporting

 PIX.MOUSE.OFF is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MOUSE.OFF

This program will stop HOSTACCESS returning anything when the mouse is used. The mouse should be turned off when not it use
to stop input being passed into non-mouse host applications.

Mouse test program

PIX.MOUSE.TEST is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.MOUSE.TEST

This program simply demonstrates how the MOUSE can be used within a host application.

It only runs if the PIX.MOUSE.ACTIVE returns true, i.e. if you have loaded a mouse driver into your PC. It will not work unless you
have this driver loaded.

This program demonstrates using the MOUSE continuously. With a button down you can drag a box around the screen. EVERY
event is monitored and displayed on the status line.

Try changing some of the parameters and experiment with other mouse detect buttons.

PC Utilities and File Transfer

Call a DOS application from PICK. PIX.CALL.DOS

Transfer a DOS file to a PICK item/PICK
spooler.

PIX.DOS.PICK

Transfer a DOS file into multiple items in
a PICK file.

PIX.DOS.PICK.ALL

Transfer data from DOS to PICK. PIX.CALL.DOS.PICK

Transfer data from PICK to DOS. PIX.CALL.PICK.DOS

Transfer a PICK item to a DOS file PIX.PICK.DOS

Transfer multiple PICK items into a
single DOS file.

PIX.PICK.DOS.ALL

Transfer multiple PICK items to multiple
DOS files.

PIX.TDUMP

Transfer multiple DOS files to multiple
PICK items.

PIX.TLOAD

Erase a DOS file. PIX.ERASE.DOS.FILE

Check DOS for the existence of a file or
directory.

PIX.EXISTS

Call an application from PICK

PIX.CALL.DOS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CALL.DOS(DOS.COMMANDS, OPTIONS)

Subroutine to call a DOS application directly from PICK with a number of options.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.COMMANDS Command may include ";" and/or "%" as required, for example:

"123" Go to DOS and run 123.

"CD\SCALC5;SC5"

Go to DOS and run SC5 from the SCALC5
directory.

"123% ¢/FRTEMP.WK1 ¢CR" Run 123 and File Retrieve (FR) the worksheet
TEMP.WK1 automatically.

If DOS.COMMANDS is null the DOS Gateway is entered, type EXIT at DOS command prompt to return back to HOSTACCESS.

OPTIONS

Null Open a DOS window normalized and activate.

2 Open a DOS window minimized and activate.

No other options are applicable in HOSTACCESS.

It is invalid to try to use SWAP with options 1 and 2 above since HOSTACCESS will not be in memory to allow any screens,
backpages or windows, etc., to be updated.

SWAPPING will ONLY take place if S option is used AND if HOSTACCESS has been configured to SWAP to EMS or DISK.

Click here        for an example.

PIX.CALL.DOS.Example

CALL PIX.CALL.DOS("CD\LOTUS;123","S")

Will tell HOSTACCESS to go to DOS, change the directory to LOTUS and call the DOS application 123. If HOSTACCESS has   
been configured to SWAP out of memory then this will also take place before calling 123. The "S" option is there for backwards
compatibility only.

Transfer a DOS file to a PICK item

PIX.DOS.PICK is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DOS.PICK(DOS.FILE.NAME, TRANSFER.DATA, OPTIONS, DESCRIPTION, STATUS.REC, ERROR)

Transfers data from a DOS file to variable TRANSFER.DATA or to the PICK Spooler. By default it is assumed that    the data is
textual. Each DOS record is converted into a PICK attribute by converting Carriage Return and Line Feed (CRLF) into an Attribute
Mark and the transfer will stop when the DOS end of file marker is found. Options are provided to override this translation and to
transfer Binary files that may contain end of file markers.

Click here        to display parameters.

Click here        for an example.

Click here        for information on processing data during transfer to PICK.

PIX.DOS.PICK parameters

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FILE.NAME Name of DOS file to be transferred up to PICK.

TRANSFER.DATA This variable returns the string containing the data
uploaded. If the data uploaded is greater than
MAX.ITEM.SIZE then TRANSFER.DATA contains the
word SPLIT followed by space and then a number for
the number of times the data has been split. Each
SPLIT is held in the PIX.TRANSFER.F file under the
names FT.SPLIT.p.s where ¢p ¢ is the port number and
¢s ¢ is the split number, starting with one.

The caller should read these split records in and then
delete them as appropriate.

OPTIONS Click here        for information on Options.

The I option (which enables programmers to process
data as it is transferred to PICK) see Processing Data
during Transfer to PICK.

DESCRIPTION Any text you want to appear in the file transfer window
might as well be null if Z option used.

STATUS.REC Dynamic array returned back to calling program
containing:

<1> Finish code with the numeric value of:
0 Transfer successful
1 Aborted at user request
2 Unable to open DOS file
3 DOS file read error
4 Protocol error
5 Retry limit reached
6 DOS file write error
7 File transfer not supported by this copy of HOSTACCESS
8 Exists on file

<2> Finish message (as above for relevant finish code)

<3> Reserved for future use

<4> Number of bytes transferred so far or all

<5> Number of times data has been split and therefore the number    of
SPLIT.p.n records in PIX.TRANSFER.F file.

ERROR Returns with a value of 1 if fatal error occurs.

Note      To detect the success of the file transfer, check the 1st attribute of STATUS.REC, not ERROR. The ERROR variable is
reserved for fatal errors such as unable to open the control file PIX.CONTROL.F and it will not be set if a file transfer error occurs.

PIX.DOS.PICK Example

CALL PIX.DOS.PICK("C:\123.BAT",REC,"Z","Description",STATUS,ERR)

Will transfer the DOS file 123.BAT into variable REC and return to the calling program. Since no ¢B ¢ option has been    specified,
the REC variable will contain attribute marks instead of CRLF ¢s. The Z option means all output is suppressed to the user.

STATUS is returned to allow the caller to verify the success of the transfer.

Processing Data During Transfer to PICK

One of the options that you can specify with PIX.DOS.PICK is the I option. This option enables programmers to write user
subroutines to process data as it is transferred from DOS to PICK.

Warning

We strongly recommend that the I option is used only by experienced developers. Also, it is the developer ¢s responsibility to
validate all relevant parameters, files, etc. before invoking PIX.DOS.PICK with the I option. We are interested in any comments or
feedback from developers who use this option, and we will consider their suggestions for any subsequent implementations.

I If specified, this option will call a specified user subroutine
and suspend file transfer. File transfer is resumed on
successful exit from the user subroutine. This option is used
by the PIX.DOS.PICK.ALL    and PIX.PICK.DOS.ALL
routines, and developers might wish to refer to these as
examples of how to implement dynamic processing of data
as it is transferred from DOS to PICK.

To invoke the I option, initialize the parameter
TRANSFER.DATA with the following attributes in a dynamic
array:

Attr Description
1 The name of the user subroutine to be called.
2 The number of bytes of transfer data to be sent to the

user subroutine for processing.
3 Reserved - should not be used.
4 - 9 Reserved for future use.
10 Attributes 10 onwards may be specified as required by

the routine that calls PIX.DOS.PICK and this can be used
as a mechanism of passing additional parameters into the
user subroutine.
When PIX.DOS.PICK first invokes the user subroutine, it
copies the TRANSFER.DATA array into the first element
of the dimensioned array called USER.VAR. USER.VAR
is passed to the user subroutine and may be manipulated
as described below. TRANSFER.DATA is then assigned
to the data string transferred from DOS which will then be
processed by the user subroutine. In all subsequent calls
to the user subroutine, TRANSFER.DATA will contain the
DOS data to be processed.

The user subroutine will be invoked with the following parameters.
SUBROUTINE user.sub(TRANSFER.DATA, BLOCK.STATUS, MAT USER.VAR)

Click here        for more information.

SUBROUTINE user.sub

The following subroutine is invoked by the PIX.DOS.PICK I option.
SUBROUTINE user.sub(TRANSFER.DATA, BLOCK.STATUS, MAT USER.VAR)

Where:

user.sub Is the name of the user subroutine that will
process the DOS data. This will have been
compiled and catalogued as appropriate to your
host PICK environment.

TRANSFER.DATA Is the data that is to be transferred from DOS and
processed. The state of this data string will be
determined by the file transfer options (B for
Binary) assigned when PIX.DOS.PICK was
called, and the initial TRANSFER.DATA
parameters which assign a number of bytes to
control when the DOS data is passed for
processing by the user subroutine. Click here   
to see the effect of this.

BLOCK.STATUS This is a flag indicating the status of the data
transferred from DOS, set as follows:

FFirst block received from DOS (so may also be
used for initialization during first call to the user
subroutine.

LThe last block received from DOS, may also be
the first, so always use INDEX to check the block
status.

NThe next block received from DOS, i.e. Continue
processing the data.

EIf the user subroutine returns BLOCK.STATUS as
E, the DOS.PICK file transfer will be closed down.
You should use this if your user subroutine needs
to check for errors and stop processing.

BLOCK.STATUS will be copied into DOS.PICK ¢s
STATUS.REC variable prior to closing down the
file transfer and returning to the controlling
routine. The first attribute of BLOCK.STATUS
must be the letter E, attribute 2 may be used to
signal different error conditions that have
occurred in the user subroutine. For example:

BLOCK.STATUS <1> = "E"

BLOCK.STATUS <2> = "Unable to open XYZ file".

If the user subroutine closes down the file transfer with an error, the controlling program (i.e. the one that called DOS.PICK) may
determine the nature of the error by checking DOS.PICK ¢s STATUS.REC variable, Where:

STATUS.REC <1> = 10, the code for user program error.

STATUS.REC <2> = a message returned from the usersubroutine
through attribute 2 of BLOCK.STATUS.

You should use INDEX to interrogate the contents of BLOCK.STATUS which may contain more than one flag, for example "FL"
when the block is both the first and to be transferred from DOS.

USER.VAR This variable will be maintained untouched by the
PIX.DOS.PICK routine, apart from the first call to the
user subroutine, when it contains in the first element a
copy of the initial parameters passed in as
TRANSFER.DATA. Remember to use MAT in the
parameter list as USER.VAR is a dimensioned array,
which should be DIM(25) within the user subroutine.

It is useful, during the first call of the user subroutine, to analyze USER.VAR and to use other elements to, say, store the "open file"
variable used for the target PICK file (which means that the file need only be opened once).

Click here        for an example.

TRANSFER.DATA

File
Transfer

Option Binary

Use Number of
Bytes to chop DOS
data

State of TRANSFER.DATA

The exact number of bytes as
specified by the Number of Bytes
parameter.

The number of bytes up to the
nearest whole attribute mark, i.e.
the data string may be longer or
shorter than the Number of Bytes
parameter.

PIX.DOS.PICK Example

This program uses PIX.DOS.PICK with the I option. This option is used in PIX.DOS.PICK. and PIX.PICK.DOS.ALL which may be
used to upload a complete PICK file, previously sent to DOS using PIX.PICK.DOS.ALL. PIX.DOS.PICK.ALL may also be used to
import a fixed length or carriage return/linefeed delimited DOS file into a PICK file, to satisfy most users ¢ requirements.

The example application program is as follows:
USER.SUB = "USER.PROGRAM.NAME"
NBR.BYTES = 5000
TRANSFER.DATA = ""
TRANSFER.DATA<1>=USER.SUB
TRANSFER.DATA<2>=NBR.BYTES
TRANSFER.DATA<10>="TARGET.FILE.NAME"
OPTION = "I"
CALL PIX.DOS.PICK("TEST.DOC", TRANSFER.DATA, OPTION, "Description", STATUS.REC, ERROR)
IF NOT (ERROR) AND STATUS.REC<1> = 0 THEN
PRINT "TARGET.FILE.NAME updated with DOS data from TEST.DOC"
END

User subroutine that processes the data as it arrives from DOS:
SUBROUTINE USER.PROGRAM.NAME(TRANSFER.DATA, BLOCK.STATUS, MAT USER.VAR)
DIM USER.VAR(25)
FIRST.TIME = INDEX(BLOCK.STATUS,"F",1)
REC = TRANSFER.DATA
IF FIRST.TIME THEN
 TARGET.FILE.NAME = USER.VAR(1)<10>
 OPEN "",TARGET.FILE.NAME TO USER.VAR(2) ELSE
 BLOCK.STATUS<1> = "E"
 BLOCK.STATUS<2> = "Unable to open file"
 RETURN;*abort file transfer
 END
END ELSE
 READ REC FROM USER.VAR(2),"REC.ID" ELSE REC = ""
 IF REC # "" THEN REC=REC:CHAR(254):TRANSFER.DATA
END

WRITE REC ON USER.VAR(2),"REC.ID"
RETURN
END

Transfer a DOS file into multiple items in a PICK file

PIX.DOS.PICK.ALL is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DOS.PICK.ALL(DOS.FILE.NAME, FILENAME, OPTIONS, FORMAT, DESCRIPTION, STATUS.REC, ERROR)

This subroutine uploads multiple PICK records from a DOS file. This is a very powerful subroutine and is capable of uploading
records stored in DOS in a number of formats, including the format created by the PIX.PICK.DOS.ALL subroutine.

If you are uploading a file that was previously created with the PIX.PICK.DOS.ALL subroutine, the same keys from the original file
will be used automatically to write these records.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FILE.NAME Name of DOS file to be transferred up to PICK.

FILENAME Is the PICK filename where the records are to be created

OPTIONS Numerous options are available. For a description of all
options please refer to Options available
DOS.PICK.ALL .

By default, this routine assumes that you are uploading records in the format created by the PICK.DOS.ALL routine. Using any (or
all) of the following options (as well as, or instead of, those mentioned above) overrides this default and automatically generates
sequential numeric keys.

Click here        for an example.

 Uploading comma delimited DOS files.

Uploading comma delimited DOS files

You can also use the following options to upload a standard comma-delimited DOS file into multiple PICK records.

1 Use <CRLF> as the inter-record delimiter and use commas
as the inter-field delimiter.

9 Use first field in delimited file as the key instead of using
the automated key.

0 Strip any double quotes from the data.

Using these options allows any comma-delimited DOS file to be uploaded to the PICK file as multiple records, converting each
comma into an attribute mark.

FORMAT This variable allows even greater control, as follows:
<1> Any string specifying inter-record delimiter (default is

CR/LF).
<2> Any string specifying inter-field delimiter.
<3> Any character string(s). Each character string will be

removed from the data. If you want multiple string
removals, this variable should be multi-valued.

<4> Numeric value to use for first key. (Default = 1).
<5> Any string to use as a prefix when writing the numeric key.
<6> Any string to use as a suffix when writing the numeric key.
<7> Multi-valued variable containing a list of specific item ids

that you want to upload.
DESCRIPTION Any text you want to appear in the file transfer window

(might be null if Z option used).
STATUS.REC Dynamic array returned back to calling program

containing:
<1>= finish code with the numeric value of:

0    Transfer successful.
1    Aborted at user request.
2    Unable to open DOS file.
3    DOS file read error.
4    Protocol error.
5    Retry limit reached.
6    DOS file write error.
7    File transfer not supported by this copy of
HOSTACCESS.
8    exists on file.
10    user program finished or aborted.

<2>    = finish message (as above for relevant finish code).
<3>    = reserved for future use.
<4>    = number of bytes transferred so far or all.
<5>    = number of times data has been split and therefore
the number    of SPLIT.p.n records in PIX.TRANSFER.F file.

ERROR Returns with a value of 1 if fatal error occurs.
The DOS.PICK.ALL uploads will stop when all the specified records have been found, regardless of whether the entire DOS file has
been uploaded.

Note      To detect the success of the file transfer, check the 1st attribute of STATUS.REC, not ERROR. The ERROR variable is
reserved for fatal errors such as unable to open the control file PIX.CONTROL.F and it will not be set if a file transfer error occurs.

Click here        for an example.

PIX.DOS.PICK.ALL Example

To upload all PICK records into the DEMO file from a single comma-delimited DOS file called DEMO.TXT using sequential keys
starting from 1, and remove any double quotes, use the following subroutine call:

CALL PIX.DOS.PICK.ALL("DEMO.TXT","DEMO","10", 1, "Uploading demo recs",STATUS.REC,ERROR)

Any records found in the PICK file with the same key as the autogenerated key will not be overwritten, unless the "O" option is
specified.

Transfer data from DOS to PICK

PIX.CALL.DOS.PICK is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CALL.DOS.PICK(TCL.INPUT, TCL.OPTIONS, ERROR)

Transfers data from a DOS file to a PICK item or to the PICK Spooler. By default it is assumed that the data is textual. Each DOS
record is converted into a PICK attribute by converting Carriage Return and Line Feed (CRLF) into an Attribute Mark and the
transfer will stop when the DOS end of file marker is found. Options are provided to override this translation and to transfer Binary
files that do not contain end of file markers.

This program actually calls the subroutine PIX.DOS.PICK to return the DOS record in a variable which this program then writes to
the specified PICK file.

The following subroutine parameters need to be passed or will be returned accordingly:

TCL.INPUT Command line string without the VERB (DOS.PICK) and
without the options . In other words, in the format:

{DICT} FILENAME ITEMNAME FROM dosname

FILENAME and ITEMNAME are the PICK file and item to
be created with the data from the DOS file dosname.

If the S spooler option is used then FILENAME and
ITEMNAME can be null. i.e. DOS.PICK FROM C:\
AUTOEXEC.BAT (S) will send the DOS file
AUTOEXEC.BAT to the PICK spooler.

If the FROM dosname parameter is missing it will be   
prompted for.

TCL.OPTIONS Click here        for details. No ¢(¢ or commas required.

ERROR Returns 1 if fatal error occurs.

To determine the status of the file transfer, the status record (as described for PIX.PICK.DOS and PIX.DOS.PICK) is written to
the file PIX.TRANSFER.F with a key of nn.FT.LOG, where nn is the port number.

Click here        for an example.

PIX.CALL.DOS.PICK Example

CALL PIX.CALL.DOS.PICK("BP TEST FROM C:\123.BAT","ZO",ERROR)

Will transfer the DOS file 123.BAT to the PICK file BP, item TEST. The ¢Z ¢ option suppresses ALL output to the user. The ¢O ¢
option forces overwrite of the TEST item if it exists in BP.

Transfer data from PICK to DOS

PIX.CALL.PICK.DOS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CALL.PICK.DOS(TCL.INPUT, TCL.OPTIONS, ERROR)

Main PICK.DOS program that calls PIX.PICK.DOS to actually perform the transfer. This program verifies the item and file and
passes the actual record as a dynamic array to the subroutine PIX.PICK.DOS

The following subroutine parameters need to be passed or will be returned accordingly:

TCL.INPUT Command line string without the VERB (PICK.DOS) and
without the options. In other words, in the format :

{DICT} FILENAME ITEMNAME TO dosname

FILENAME and ITEMNAME are the PICK file and item to be
sent to the DOS file dosname.

TCL.OPTIONS Click here        for details. No ¢(¢ or commas required.

ERROR Returns 1 if fatal error occurs.

To determine the status of the file transfer, the status record (as described for PIX.PICK.DOS and PIX.DOS.PICK) is written to the
file PIX.TRANSFER.F with a key of nn.FT.LOG, where nn is the port number.

Click here        for an example.

PIX.CALL.PICK.DOS Example

CALL PIX.CALL.PICK.DOS("BP TEST TO C:\123.BAT","H",ERROR)

Will transfer the PICK item TEST from the file BP to the DOS file 123.BAT. The H option will still display HOSTACCESS ¢s    file
transfer status window but the window is closed automatically when the transfer has finished, i.e. no user intervention required.

Transfer a PICK item to a DOS file

PIX.PICK.DOS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PICK.DOS(TRANSFER.DATA, DOS.FILE.NAME, OPTIONS, DESCRIPTION, STATUS.REC, ERROR)

Transfers data in variable TRANSFER.DATA to a DOS file. By default the data is assumed to be text and attribute marks will be
converted to Carriage Return/Line Feeds (CRLF), value marks and sub-value marks will be converted to spaces and a DOS end of
file character will be written to the end of the DOS file. Options are provided to override this translation.

The following subroutine parameters need to be passed or will be returned accordingly:

TRANSFER.DATA The variable containing the data you want transferred to
DOS.

DOS.FILE.NAME The name of the DOS file you wish to transfer the PICK
data to. This can optionally include the drive letter
and/or full path. If no drive/path specified, DOS file will
be created in the current HOSTACCESS directory.

OPTIONS Numerous options are available, click here        for
more information.

DESCRIPTION Any text you want to appear against the "Host file
name :" in the file transfer window, might as well be null
if Z option used.

STATUS.REC Dynamic array returned back to calling program
containing :

<1> = finish code with the numeric value of:

0 Transfer successful.

1 Aborted at user request.

2 Unable to open DOS file.

3 DOS file read error.

4 Protocol error.

5 Retry limit reached.

6 DOS file write error.

7 File transfer not supported by this copy of
HOSTACCESS.

<2> = finish message (as above for relevant finish
code).

<3> = reserved for future use.

<4> = no. of bytes transferred.

ERROR Returns 1 if fatal error occurs.

Note: To detect the success of the file transfer, check the 1st attribute of STATUS.REC, not ERROR. The ERROR variable is
reserved for fatal errors such as unable to open the control file PIX.CONTROL.F and it will not be set if a file transfer error occurs.

Click here        for an example.

PIX.PICK.DOS Example

CALL PIX.PICK.DOS(REC,"C:\123.BAT","Z","Xfer",STATUS,ERR)

Will transfer the data in the variable REC into the DOS file 123.BAT and return to the calling program. Since no ¢B ¢ option has
been specified, any attribute marks in REC will be converted to CRLF ¢s in the DOS file. The ¢Z ¢ option means all output is
suppressed to the user. STATUS is returned to allow the caller to verify the success of the transfer.

Transfer multiple PICK items into a single DOS file

PIX.PICK.DOS.ALL is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PICK.DOS.ALL(PICK.FILE.NAME, DOS.FILE.NAME, OPTIONS, DESCRIPTION, STATUS.REC, ERROR)

This subroutine creates a single DOS file from an active select list or from an entire file. The DOS file will contain all the PICK
selected records and their keys in an internal format specific to HOSTACCESS. The records in the file can then be uploaded again
using PIX.DOS.PICK.ALL.

PIX.TDUMP can also be used to download multiple PICK records, but has the disadvantage of creating a DOS file for each record.
When used with PIX.TDUMP, this has the advantage that it is capable of quickly uploading specific records.

The following subroutine parameters need to be passed or will be returned accordingly:

PICK.FILE.NAME Is the PICK filename containing the records that you
want transferred to DOS.

DOS.FILE.NAME The name of the DOS file you wish to transfer the
PICK data to. This can optionally include the drive
letter and/or full path. If no drive/path specified, DOS
file will be created in the current HOSTACCESS
directory.

OPTIONS See Options Available With DOS.PICK.ALL

DESCRIPTION Any text you want to appear against the "Host file
name :" in the file transfer window, might as well be
null if Z option used.

STATUS.REC Dynamic array returned back to calling program
containing :

<1> = finish code with the numeric value of:
0 Transfer successful

1 Aborted at user request

2 Unable to open DOS file

3 DOS file read error

4 Protocol error

5 Retry limit reached

6 DOS file write error

7 File transfer not supported by this copy of
HOSTACCESS

 <2> = finish message (as above for relevant finish
code)

 <3> = reserved for future use

 <4> = no. of bytes transferred

ERROR Returns 1 if fatal error occurs.

Note: to detect the success of the file transfer, check the 1st attribute of STATUS.REC, not ERROR. The ERROR variable is
reserved for fatal errors such as unable to open the control file PIX.CONTROL.F and it will not be set if a file transfer error occurs.

Click here    PIX.PICK.DOS.ALL      for an example.

PIX.PICK.DOS.ALL Example

EXECUTE ¢SELECT SALES WITH CODE = "ARCHIVE" ¢
CALL PIX.PICK.DOS.ALL("SALES","SALES.HIS","","Sales Archive",STATUS.REC,ERR)

This example will create a single DOS file called SALES.HIS in the HOSTACCESS run-time directory. SALES.HIS will contain all
the PICK records selected from the SALES file. This DOS file is in the format that is readable by the PIX.DOS.PICK.ALL routine to
bring the records back up to the PICK system when required. STATUS.REC is returned to allow the caller to verify the success of
the transfer.

To download selected records from the PICK file STAFF into a single DOS file called STAFFILE.ALL, use the following:
EXECUTE ¢SELECT STAFF WITH AGE > "65" ¢
CALL PIX.PICK.DOS.ALL("STAFF","C:\FILES\STAFFILE.ALL","",
"Downloading Staff recs",STATUS.REC,ERROR)

This DOS file STAFFILE.ALL may be subsequently uploaded to a PICK file using DOS.PICK.ALL (or a call to the subroutine
PICK.DOS.PICK.ALL).

Transfer multiple PICK items to multiple DOS files

PIX.TDUMP is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.TDUMP(TCL.INPUT, TCL.OPTIONS, PATH.NAME, TAPE.NAME, ERROR)

This routine performs the same way as PICK T-DUMP except that instead of writing to tape, the records are sent to DOS.

You will be asked for a ¢PSUEDO TAPE ¢ name of up to 8 chars in length. This name should be unique to allow you to identify this
tape in the future and a valid DOS file name. You will then be asked for a DOS path name where you want the tape called ¢name ¢
to be stored.

For example, call your tape PROGRAMS and gave a directory of "\TAPES".

In the directory TAPES after a TDUMP will be the following:

PROGRAMS.PIX An internal index used to identify what ¢s in ¢TAPE ¢.

PROGRAMS.001 The first record.

PROGRAMS.002 The second record.

PROGRAMS.xxx Etc., Up to ".999".

PROGRAMS.XRF Index to identify DOS name given to each PICK name so
that the user can select individual items at DOS.

If a PICK SELECT list is active, i.e. you have executed a SELECT statement or a GET-LIST immediately prior to invoking TDUMP,
then his list will be applied to the named file.

The following subroutine parameters need to be passed or will be returned accordingly:

TCL.INPUT Command line without the TCL command, i.e.

{DICT} PROGRAMS {*} {itemname}

TCL.OPTIONS Valid options are basically the same as those for PICK.DOS
but ¢Z ¢ is likely to be the most common one used to stop
the display of each file transfer window for each record. The
¢S ¢ option will suppress the display of the record id ¢s to the
screen. The ¢O ¢ option will overwrite the DOS files if they
already exist.

PATH.NAME DOS path to directory where ¢tape ¢ is to be stored. If null
then ¢tape ¢ will be created in the HOSTACCESS run-time
directory.

TAPE.NAME DOS file name (without suffix) to be used as ¢Tape ¢.

ERROR Returned as 1 if error occurred.

Transfer multiple DOS files to multiple PICK items

PIX.TLOAD is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.TLOAD(TCL.INPUT, TCL.OPTIONS, PATH.NAME, TAPE.NAME, ERROR)

This program uploads TDUMP format DOS files back to the host system. The following subroutine parameters need to be passed or
will be returned accordingly:

TCL.INPUT Command line without the TCL command, i.e. {DICT}
PROGRAMS

TCL.OPTIONS The options available are:

? Cause TDUMP to display a list of the items on the
specified file, then allow you to enter either selected
item names or ¢* ¢ to upload all items. The user
should enter item names separated by space.

O Overwrite existing PICK items, with the same record
id.

PATH.NAME DOS path to directory where ¢Tape ¢ is stored. If null then
the HOSTACCESS directory is used.

TAPE.NAME DOS file name (without suffix) holding ¢Tape ¢ records.

ERROR Returned as 1 if error occurred.

Erase a DOS file

PIX.ERASE.DOS.FILE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.ERASE.DOS.FILE(DOS.FILE)

Subroutine to erase a single DOS file. This routine is useful if you want to make sure the file is deleted, for example,    before
starting terminal printing to a DOS file.

No screen output occurs, so user is unaware of anything happening. If you want to check if the file exists first then CALL
PIX.EXISTS(DOS.FILE,CHECK) and see that CHECK is not 0 or 2, i.e., does not exist or not a directory, respectively.

DOS.FILE can be the complete drive and path parameters. If no path is specified, it will delete that file from the current
HOSTACCESS directory. If DOS.FILE evaluates to being a path name only then the erase will not take place.

Only the whole file name is valid and only a SINGLE DOS file is deleted i.e. NO wildcards *.* or *.DOC etc.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FILE Can be a DOS file with or without a drive and/or path
destination. If no path is specified, the default current
HOSTACCESS directory will be assumed, that is If DOS.FILE is
C:\TEMP\TEST.DOC then the DOS file TEST.DOC will be
deleted from the TEMP directory in PC drive ¢C ¢.

Click here        for an example.

PIX.ERASE.DOS.FILE Example

CALL PIX.ERASE.DOS.FILE("C:\LOTUS\BACKUP.WK1")

Will delete the DOS file BACKUP.WK1 from the LOTUS directory.

Check DOS for existence of a file or directory

PIX.EXISTS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.EXISTS(DOS.FILE, CODE)

This program is extremely useful if you want to check DOS for the existence of a file or directory e.g. before deleting it or uploading
it or validating user response.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FILE DOS.FILE should be the FULL path including the drive if
necessary.

CODE Returned as :

0 - DOS directory or file does not exist

1 - exists and is a DOS file

2 - exists and is a DOS directory

Click here        for an example.

PIX.EXISTS Example

CALL PIX.EXISTS("C:\LAST.LOG",CODE)

Will return CODE back to the calling program indicating whether LAST.LOG exists in the DOS root directory as either a file or a
directory.

EASY.ACCESS, PASS.TO and GET

EASY ACCESS PIX.EASY.ACCESS

Extract data from a PICK file. PIX.GET

PASS.To routines PIX.PASS.TO

PASS.TO spreadsheet. PIX.PASS.TO.Spreadsheet.Product

PASS.To Word Processing product. PIX.PASS.TO.Word.Processing.Product

Create a list of dictionaries. PIX.CREATE.WORD.DICT

Create a DOS file in DIF format. PIX.PASS.TO.DIF

Create a DOS file in a specified format. PIX.PASS.TO.DOS

PIX.EASY.ACCESS

PIX.EASY.ACCESS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.EASY.ACCESS(TCL.INPUT, TCL.OPTIONS)

This routine provides a front end to all flavors of the PICK inquiry language, such as ACCESS, INFORM, ENGLISH, RECALL, etc.

This is a tremendously powerful yet very easy to use facility that should really be integrated in virtually every PICK database. It
combines a sophisticated sentence builder with    most of the data extraction and transfer routines available in HOSTACCESS. This
means that, from just one routine, the user can now inquire on his PICK database, extract the relevant information and automatically
pass this in to almost any desired DOS package (even 3 dimensionally graph it) with only a few keystrokes!

The parameters TCL.INPUT and TCL.OPTIONS should be exactly as if specified by a user on the TCL command line.

The ¢F ¢ option is more relevant to applications calling PIX.EASY.ACCESS since specific options and facilities can be FORCED
either on or off.

Extract data from a PICK file

PIX.GET is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.GET (TCL.INPUT, SORT.CRITERIA, TCL.OPTIONS, LIST.NAME, ERROR)

PIX.GET has been designed to extract data from any PICK file in preparation for transfer of this data to a DOS package or file. The
data extracted by GET is used by one of the PASS.TO... routines.

PIX.GET will process virtually any inquiry and uses all of the facilities available to the user from PICK Dictionary definitions,
including "A" and "F" correlatives and "I-types".

Click here        for full information on GET.
The parameters should be passed almost exactly as if the user had typed them in on the TCL command line.

TCL.INPUT Command line without the TCL command GET.

SORT.CRITERIA Optional sort/select criteria string, e.g. ¢BY NAME
WITH NAME EQ "SMIT]" ¢.

TCL.OPTIONS T and/or P option string.

LIST.NAME Optional PICK SELECT-LIST name.

PASS TO routines

....HOSTACCESS provides a powerful facility for PICK users to be able to pass data directly into DOS or Windows products using
the PIX.PASS.TO subroutines. It is not necessary for a user to understand how to read or import data into the DOS or Windows
software since HOSTACCESS, through the pass    subroutines, can do everything automatically.

In this topic, the meaning "PASS.TO" implies all of the HOSTACCESS pass to DOS or Windows subroutines, for example
PIX.PASS.TO.EXCEL, PIX.PASS.TO.LOTUS, PIX.PASS.TO.SUPERCALC, PIX.PASS.TO.SYMPHONY, PIX.PASS.TO.QUATTRO,
PIX.PASS.TO.WORD, or PIX.PASS.TO.WORDPERFECT. The PIX.PASS.TO subroutines fall into three categories:
· PIX.PASS.TO spreadsheet packages - PIX.PASS.TO.EXCEL, PIX.PASS.TO.LOTUS, PIX.PASS.TO.SUPERCALC,

PIX.PASS.TO.SYMPHONY, and PIX.PASS.TO.QUATTRO
· PIX.PASS.TO word processing packages - PIX.PASS.TO.WORD and PIX.PASS.TO.WORDPERFECT
· PIX.PASS.TO.DIF and PIX.PASS.TO.DOS.
All the PASS.TO routines can be driven from PICK/BASIC as subroutine calls, or they can be driven directly as TCL commands.
They can also be driven or are available as command interfaces from EASY.ACCESS.

Each PASS.TO application has a control record in the PIX.CONTROL.F file, and any application that supports both DOS and
Windows has 2 records, the Windows record having a suffix of .WINDOWS. The PASS.TO control records also hold information on
graph types (where relevant) and how to start and run the DOS or Windows application.

All the PASS.TO routines will pass the data from the last GET inquiry into the particular DOS or Windows software package or file
format such as LOTUS, SuperCalc, DIF etc.

Click here          for further information.

PIX.PASS.TO...notes

Note 1      For backwards compatibility, the COMMAND parameter in all the PASS.TO application subroutines still exists. However,
we recommend that you leave this null and that the DOS or Windows command is stored in attribute 3 of the relevant control record
in the PIX.CONTROL.F file. For example, with PASS.TO.LOTUS the stored command would read:

003 123
and with PASS.TO.LOTUS.WINDOWS the stored command would read:

003 123W.EXE
This is based on the assumption that your DOS PATH variable has been correctly configured to point to this command. We
recommend that you use this standard for calling all DOS or Windows applications through HOSTACCESS.

The command used to start the spreadsheet application is retrieved by reading attribute 3 of the PASS.TO. application record in the
PIX.CONTROL.F file. If the ¢nth ¢ multi-value (¢n ¢ being port number plus 2) is not null then the command stored there is used. If
this multi-value is null then the command stored in multi-value 1 is used. We recommend that everyone on the host calls the
particular DOS or Windows product in the same way. That is, they should use multi-value position 1 only. This is easier on networks,
for example, where the port number is not always known.

Note 2      When you use PASS.TO routines, temporary DOS files are created. If data is being passed to a DOS package, the
temporary files are subsequently removed automatically. However, if data is being passed to a Windows product, the temporary files
cannot be deleted owing to Windows multi-tasking environment. Your application may want to delete this temporary DOS file or just
leave it to be overwritten by the next PIX.PASS.TO routine. The temporary DOS file is called PIXELnn.TMP (in
PIX.PASS.TO.QUATTRO it is called PIXELnn.DIF) where nn is the host port number.

Note 3      EXCEL, WORD, and the Windows versions of QUATTRO PRO, and LOTUS, can be DDE servers. Therefore, data that is
passed to or merged into these packages using the PIX.PASS.TO routines is done using the DDE calls and subroutines built into
HOSTACCESS for Windows.

PIX.PASS.TO Spreadsheet Product

These subroutines include PIX.PASS.TO.EXCEL, PIX.PASS.TO.LOTUS, PIX.PASS.TO.QUATTRO, PIX.PASS.TO.SUPERCALC
and PIX.PASS.TO.SYMPHONY.

PIX.PASS.TO.productname are BASIC subroutines that can be called from your applications as follows:
CALL PIX.PASS.TO.productname(COMMAND,GRAPH.TYPE,ERROR)

Where:

productname Is EXCEL, LOTUS, QUATTRO, SUPERCALC or
SYMPHONY.

This program automatically calls and passes the result from the last GET statement into the relevant spreadsheet product.

The spreadsheet product need not already be started on your desktop, HOSTACCESS will determine if it is already running and, if
not, it will start it accordingly. Data will then be transferred and imported automatically whilst the spreadsheet product is running in
the foreground if HOSTACCESS started it, or in the background if it was already running.

The following subroutine parameters need to be passed or will be returned accordingly:

COMMAND This parameter should be null. (See Note 1 in
PIX.PASS.TO notes.)

GRAPH.TYPE if null, the data will be imported and the user will be taken
into the spreadsheet.

You may specify the graph type either by using the name
of the graph or by using a number that corresponds to the
required graph type. A list of graph type names is held in
attribute 2 of the control record PASS.TO.productname in
the PIX.CONTROL.F file. The graph type number should
be the number of the multi-value in attribute 2 of this
record.

A list of graph type descriptions can be viewed easily in the
appropriate menu option when using EASY.ACCESS.

ERROR Returns 0 if successful, 1 if error occurred.

Note: QUATTRO PRO has 2 anomalies (at time of going to press), one of which is the 128 byte limit on DDE commands. This
means that each DDE instruction causes the QUATTRO PRO screen to flash. The second is that FILE OPEN forces QUATTRO
PRO to the foreground application which shows the user everything that is happening.

PIX.PASS.TO Word Processing Product

These subroutines include PIX.PASS.TO.WORD and    PIX.PASS.TO.WORDPERFECT.

PIX.PASS.TO.productname is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PASS.TO.productname (COMMAND,DOC.NAME,ERROR)

Where:

productname Is WORD or WORDPERFECT.

This program automatically calls and passes the result from the last GET statement into the relevant word processing product.

The spreadsheet product need not already be started on your desktop, HOSTACCESS will determine if it is already running and, if
not, it will start it accordingly. Data will then be transferred and imported automatically whilst the spreadsheet product is running in
the foreground if HOSTACCESS started it, or in the background if it was already running.

The following subroutine parameters need to be passed or will be returned accordingly:

COMMAND This parameter should be null. (See Note 1 in the
PIX.PASS.TO notes.)

DOC.NAME The name of the document that you want the data to be
passed into. If no DOC.NAME is specified, it is prompted for.

ERROR Returns 0 if successful, 1 if error occurred.

Note 1      Because (at time of going to press) WordPerfect
does not support being a DDE server, HOSTACCESS sends
the keystrokes to WordPerfect to automate the MERGE.
The only disadvantage is that:

a)WordPerfect if already started must have no documents
already open and must have a window title of WordPerfect
[Document1 - unmodified].

b)The user will see every keystroke as it is replayed and the
corresponding screen updates.

c)Wordperfect must remain as the active foreground
application (not minimized) and cannot be interrupted.
Unlike DDE, keystrokes can only be sent to the currently
active application - if the user changes this, the mailmerge
will fail.

Note 2    PIX.PASS.TO.WORD users can use the subroutine PIX.CREATE.WORD.DICT to help build WORD header files from
PICK dictionaries.

Create a list of dictionaries

PIX.CREATE.WORD.DICT is a BASIC subroutine that creates a DOS file containing a list of dictionaries for a given PICK file. The
DOS file can then be used by    WORD for Windows users to assist in the creation of mailmerge documents. (We hope you find this
useful as we do when producing mailing lists for HOSTACCESS users).

PIX.CREATE.WORD.DICT can be called from your application as follows:
CALL PIX.CREATE.WORD.DICT (PICK.FILE.NAME, DOS.FILE.NAME, ERROR)

This program creates a DOS file that allows anyone using Word to call up a list of dictionaries of a given PICK file by using the Print
Merge menu and attaching this file as the ATTACH HEADER file. Clicking on the insert field button in Word will then reveal, as a
select list, all the given fields in this file.

The following parameters need to be passed or returned accordingly:

PICK.FILE.NAME The actual PICK file name in this account to use for the
list.

DOS.FILE.NAME The full DOS path and DOS file name to store the result
in. Normally this path will be where WORD has easy
access to it.

ERROR Returns 1 if fatal error occurs.

PIX.PASS.TO.Word Processing Product.

PIX.PASS.TO.DIF

PIX.PASS.TO.DIF is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PASS.TO.DIF(DOS.FULL.PATH, ERROR)

This program creates and sends a DIF file to DOS using the result of the last GET statement.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FULL.PATH Should be set to full drive:\path\file where you wish to store
the file. If null the file PIXELnnn.TMP (where ¢nnn ¢ is
PICK user ¢s port number) is created in the main
HOSTACCESS run-time directory.

ERROR Returned as 0 if successful, 1 if error occurred.

PIX.PASS.TO.DOS

PIX.PASS.TO.DOS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.PASS.TO.DOS(DOS.FULL.PATH, FIRST. DELIMITER, SECOND.DELIMITER, OPTIONS, ERROR)

This program passes the data from the last GET statement to the specified DOS file using delimiters passed in the variables
FIRST.DELIMITER and SECOND.DELIMITER or by setting options 1 to 4 for some specific DOS defaults.

The following subroutine parameters need to be passed or will be returned accordingly:

DOS.FULL.PATH e.g. C:\HOST\TEXT.TXT

Should be set to full drive:\path\file where you wish to
store the file. If null the file PIXELnnn.TMP (where ¢nnn
¢ is PICK user ¢s port number) is created in the main
HOSTACCESS run-time directory.

FIRST.DELIMITER DOS delimiter to the LEFT of each field.

SECOND.DELIMITER DOS delimiter to the RIGHT of each field

If FIRST and SECOND delimiters are BOTH null then a
comma delimited file will be created as default.

OPTIONS The following options are available as defaults :

1 Comma delimited file

2 Quote delimited file

3 Space delimited file

4 Fixed Length delimited file where field dictionary width
fixes the length.

Others can be added very easily if you look at the option
process code. Let Pixel know about any others you are
adding and we will be happy to put relevant
enhancements into the standard product and therefore
fully support them.

ERROR Returned as 0 if successful, 1 if error occurred.

Miscellaneous

Display environment PIX.ENVIRONMENT.

 Return HOSTACCESS ’ s serial number to the host. PIX.GET.SERIAL.NO.

Return information about HOSTACCESS PIX.TERMITE.INFO.

Return HOSTACCESS ’ s file path PIX.TERMITE.DIRECTORY.

Activate command stacker PIX.COMMAND.STACK.

Turn on all keys on a DOS keyboard PIX.SCAN.KEYS.

Change print device PIX.LOCAL.PRINT.DEVICE.

Display fonts PIX.SHOW.PC.FONTS.

TCL environment PIX.TCL.

Activate pop-up calculator PIX.CALC.

Activate database utilities PIX.DB.

Select a cursor PIX.CURSOR.

Display environment

PIX.ENVIRONMENT is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.ENVIRONMENT(ERROR)

This subroutine displays the current HOSTACCESS ENVIRONMENT. The record ENVIRONMENT is held in the PIX.CONTROL.F
file.

Do not change this record - if you do need to change any of the attributes, please contact PIXEL for advice first.

Attribute Description

1 Machine type (set at install time)

2 Account name (main installed HOSTACCESS account)

3 Reformat type as one of the following :

0 Not supported

1 Generic pick,

2 ID-SUPP bug so GET has to fix it automatically.

4 Maximum item size, 30000 is the default except for Prime,
UniVerse, UniData and McDonnell Douglas 7.0+ when this is
set to 5120000 (5Mb).

5 System supports char(255) in data and spooler. This will be
either :

0 Host does not support char(255)

Host can support char(255)

Prime, Universe, Unidata and McDonnell Douglas 7.0+
all support 255 so this is set to 1 at install time.

Return HOSTACCESS’s serial number to the host

PIX.GET.SERIAL.NO is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.GET.SERIAL.NO(SERIAL.NO)

Each copy of HOSTACCESS is given a unique serial number and when it is installed on a PC it is targeted to that PC ¢s hard disk.

This program returns HOSTACCESS ¢s unique serial number to the Host application.

The following subroutine parameters need to be passed or will be returned accordingly:

SERIAL.NO Returned as the serial number of HOSTACCESS running
in this PC.

The first two digits of the serial number may be used to find
out which version of HOSTACCESS is being used, where:

1st 2 digits HOSTACCESS version number

6n HOSTACCESS for Windows version 6.n
(e.g. 6.0, 6.1 etc.)

Return information about HOSTACCESS

PIX.TERMITE.INFO is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.TERMITE.INFO(STATUS.REC)

This subroutine passes back information about the current HOSTACCESS. The following subroutine parameters need to be passed
or will be returned accordingly:

STATUS.REC Will be returned as a dynamic array as follows:

<1> 1 if HOSTACCESS for Windows running or 0 if
DOS version

<2> 1 if current PC is color, 0 if mono

<3> 1 if blinking is enabled on PC, 0 if not

<4> 1 if this PC has a mouse that HOSTACCESS
can use, 0 if not

Note      This routine combines information from previous subroutines to allow new information to be added to later without the need
to change host application code. So don ¢t be surprised if you get more than 4 attributes back in future releases.

Return HOSTACCESS’s file path

PIX.TERMITE.DIRECTORY is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.TERMITE.DIRECTORY(PATH)

This routine returns the full DOS path including the drive that HOSTACCESS is running from. This is really useful if you need to
know a valid disk drive and/or directory that you can write to.

The PIX.PASS.TO routines rely on this to write the PIXELnnn.TMP file and then tell DOS products what drive and directory this file
is in.

The following subroutine parameters need to be passed or will be returned accordingly:

PATH Is returned for example as C:\host or perhaps A:\ if running from a
floppy disk.

Activate    command stacker

PIX.COMMAND.STACK is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.COMMAND.STACK(ON.OFF)

HOSTACCESS by default logs every command entered at TCL, UNIX shell, ORACLE etc., and then presents a list of the last ¢n ¢
commands when you press ALT/R in HOSTACCESS. Commands can be modified and/or sent back to the host again for
resubmission.

This is a very powerful command line stacker for all operating systems and obviously gives you a standard stacker even for
machines that don¢t normally support one.

This program tells HOSTACCESS to STOP updating HOSTACCESS ¢s RECALL command stacker (ALT/R). You may want to turn
this off around passwords, also perhaps around editors and wordprocessors or in applications that process user input on a single
character by character basis.

The following subroutine parameters need to be passed or will be returned accordingly:

ON.OFF Should be set to the words ¢ON ¢ or ¢OFF ¢, nothing happens if neither
word is sent.

Turn on all keys on a DOS keyboard

PIX.SCAN.KEYS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.SCAN.KEYS(ON.OFF)

SCAN.KEYS are used when an application requires access to all of the keys on the DOS keyboard which may or may not be
available from the particular emulation they are in. By turning scan keys on, HOSTACCESS will return a scan code for all of the non-
ASCII keys from the keyboard. This code will be the same, no matter what the emulation is.

If an application has detected that HOSTACCESS is active, it can set the Scancodes ON in order to take control of all 48 function
keys, arrow keys, ALT combinations, CTRL combinations etc. If this session has been KEYBOARD configured with REMOTE PAGE
KEYS then PAGEUP/DOWN will also generate a SCAN code. If this is set to LOCAL then HOSTACCESS will use PAGEUP/DOWN
for control of history pages. Setting SCAN.KEYS to off will reset all keys back to their emulation specific function and/or in the case
of function keys back to their user/application programmed sequences. The following subroutine parameters need to be passed or
will be returned accordingly:

ON.OFF Should be set to the words ¢ON ¢ or ¢OFF ¢.

Change print device

PIX.LOCAL.PRINT.DEVICE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.LOCAL.PRINT.DEVICE(DEVICE.NAME)

Subroutine to change the current print device from the printer specification option on the menu [Configure>Session>Printer>Print
device] in the Print setup... option from the Configure menu in HOSTACCESS for Windows. All LOCAL printing will then go to this
print device which can either be a DOS file name including the path (if no path specified then a file will be created in the directory
HOSTACCESS is currently running from).

If DEVICE.NAME is a File, then the file should be ERASED first if you do not wish HOSTACCESS to append any existing data in the
file.

The following subroutine parameters need to be passed or will be returned accordingly:

DEVICE.NAME DEVICE.NAME is the DOS device or filename into which

all print output should be directed for this session. It could
be LPT1, LPT2, COM1, COM2 if you have a printer on one
of those devices or it could be a DOS file name.

Note: Remember to first erase this file, if you do not printing is appended to any data within it.

Display fonts

PIX.SHOW.PC.FONTS is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.SHOW.PC.FONTS

This routine allows the user to select from four font tables, each displaying a set of PC characters.

This routine is only intended as a demonstration. To see how it works, select the relevant menu option in the DB command.

TCL environment

PIX.TCL is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.TCL

This program can be called from any program to give a new TCL environment for executing programs. The calling programs
application screen is stored in the slot stack and restored as is before returning to the application.

This program will use SLOT number 16 and refresh the screen as last used by this program.

Activate pop-up calculator

PIX.CALC is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CALC(START.VALUE, RETURNED.VALUE)

This is a pop-up calculator routine, may be called from an application or invoked from TCL via CALCIT verb. This powerful program
as much as anything else demonstrates many of the HOSTACCESS facilities. From opening windows, colour, drawing intelligent
merging lines and even how to utilize the mouse. This program is not intended to be a replacement for the office calculator but it
does prove just what can be done on PICK systems with BASIC HOSTACCESS.

The following subroutine parameters need to be passed or will be returned accordingly:

START.VALUE Optional value to load into calculator at start, may
be null.

RETURNED.VALUE CURRENT.RESULT returned upon EXIT

Activate database utilities

PIX.DB is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.DB

This program provides a PICK/BASIC programmer with a comprehensive set of utilities for editing, copying, formatting, compiling,
cataloging routines as well as a gateway back into TCL. It is unlikely that you will really need to call this as a subroutine since we
provide a TCL command called DB - A DATA BASIC Programmer ¢ s Utility     to do same thing. All of the facilities are presented
through a pop-down menu structure, which may be easily modified to suit the programmer ¢s host PICK flavor, INFORMATION,
REALITY, etc.

Select a cursor

PIX.CURSOR is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.CURSOR(TYPE, ON.OFF)

This program allows you to choose between a block or line cursor or even no cursor at all.

The following subroutine parameters need to be passed or will be returned accordingly:

TYPE Should be the words ¢BLOCK ¢ or ¢LINE ¢ or null

ON.OFF Should be the words ¢ON ¢ or ¢OFF ¢ or null. If ON is selected
and no type is selected then the currently active cursor shape is
turned on.

It is VALID to pass both parameters if you wish.

Windows Integration

Determines whether a Windows
application is running.

PIX.WIN.RUNNING

Start a Windows Program. PIX.WIN.RUN

Control the Windows state. PIX.WIN.CHANGE.STATE

Display a PCX image file. PIX.DISPLAY.IMAGE

Display a Windows image. PIX.WIN.DISPLAY.IMAGE

Sends keys in DOS Keyboard stacker
format to specified Windows application.

PIX.WIN.SEND.KEYS

Detect if a Windows application is running

PIX.WIN.RUNNING is a BASIC subroutine that can be called from your applications as follows:

CALL PIX.WIN.RUNNING(APP.NAME,RUNNING)

This subroutine ascertains whether a Windows application is running or not.

Note      If the application supports being a DDE server, it is recommended that you call PIX.DDE.INITIATE to detect whether that
server application is active or not, because using the server name is more accurate and reliable than depending on APP.NAME.

The following subroutine parameters need to be passed or will be returned accordingly:

APP.NAME This must be the name of the Windows application,
normally this is the name held in the Window Title as
shown exactly on the desktop, e.g.

WORDPERFECT [DOCUMENT1 - UNMODIFIED]

RUNNING Returned as 1 if the application is running on the desktop,
0 if not.

Start a Windows Program

PIX.WIN.RUN is a BASIC subroutine that can be called from your applications as follows:

CALL PIX.WIN.RUN(WIN.PROGRAM.NAME,STATE,SUCCESSFUL)

This subroutine allows any Windows program to be started on the desktop.

The following subroutine parameters need to be passed or will be returned accordingly:

WIN.PROGRAM.NAME
This is the drive:\path\winprogname of the Windows program you
wish to start e.g. D:\123W\123W.EXE
If you do not specify a drive and path, the Windows program must
be defined in the DOS path so that it can be found.
You can also specify startup parameters here, for instance

d:\123W\123W.EXE DEMO.WK3

to start 123 for Windows and open DEMO.WK3 worksheet

STATE Is the state in which you want WIN.PROGRAM.NAME to be
started. For example:
1 - Activates and displays the Window

2 - Activates and minimizes the Window

3 - Activates and maximizes the Window
7 - Displays the window minimized but does not change active
window

SUCCESSFUL Returned as 1 if WIN.PROGRAM.NAME was started successfully,
0 if not.

Control the Windows state

PIX.WIN.CHANGE.STATE is a BASIC subroutine that can be called from your applications as follows:
CALL PIX.WIN.CHANGE.STATE(APP.NAME,STATE,SUCCESSFUL)

This subroutine provides control over the Window state (Minimize, Maximize etc.) of a given application already running on the
Windows desktop.

Note: It is recommended that you use DDE if it is available and practical because using the server name is more accurate and
reliable than depending on APP.NAME.

The following subroutine parameters need to be passed or will be returned accordingly:

APP.NAME This must be the name of the Windows application.
Normally this is the name held in the Window Title as
shown exactly on the desktop, e.g. WORDPERFECT
[DOCUMENT1 - UNMODIFIED]

If APP.NAME is null, the state change will affect the current
HOSTACCESS window.

STATE Changes the State of APP.NAME ¢s window as follows:

1 - Activates and displays the window

2 - Activates and minimizes the window

3 - Activates and maximizes the window

7 - Displays the window minimized but does not change
active window

SUCCESSFUL Returned as 1 if the state change was successful, 0 if not.

Display a Windows image

 PIX.WIN.DISPLAY.IMAGE is a BASIC subroutine that can be called from your applications as follows:

CALLPIX.WIN.DISPLAY.IMAGE(IMAGENAME,TITLE,SCALE,STATE,OPTIONS, STATUS)

Where:

IMAGENAME Is the DOS image file name (including drive and path where
necessary) of the image to be displayed. The imagename
must be a valid PCX image file.

TITLE Is an optional title that will be displayed in the Application
Name bar. If omitted, "Image [IMAGENAME]" will be used.

SCALE Is an optional integer representing the percentage of the size
of the original image to be displayed. The default is 100 (same
size). SCALE can be any number greater than 0, such as:

25 ¼ size
50 ½ size
75 ¾ size

200 x2 size
400 x4 size

STATE Specifies how you want the image displayed, as follows:

1 Activates and displays window.

2 Activates and minimizes window.

3 Activates and maximizes window.

7 Displays and minimizes but does not make active.

OPTIONS The following options are available:

F Specifies that the image is to fit into the size of the image
display window. If specified, this means that if the user
changes the image display window size, the image will
automatically be scaled to fit as best as possible.

C Closes the displayed image window named in TITLE.

STATUS 0, 1, or 2, as follows:

0 IMAGE program started successfully and image displayed.

1 IMAGENAME was not found in the specified path.

2 IMAGE program was not started.

3 No close APP.NAME specified to close image, if "C" option
used.

HOSTACCESS enables more than one image to be displayed on the user ¢s desktop at the same time. To achieve this, simply call
another subroutine for the next image, changing the scale as required.

There is no limit to the number of images that can be displayed in this manner, simply repeat the subroutine for each image. It is
often useful to decrease the size of these images by setting the SCALE parameter to 50 (half size) or less.

Please note that multiple images can only be displayed on the same screen if they all have identical palettes. Images with different
palettes will ¢corrupt ¢ each others ¢ screen image (often giving an "infra-red" like display).

Sends keys to a Windows application

PIX.WIN.SEND.KEYS is a BASIC subroutine that can be called from your applications as follows:

CALL PIX.WIN.SEND.KEYS(APP.NAME,KEYS,SUCCESSFUL)

This subroutine sends KEYS in the DOS keyboard stacker format to the specified Windows application APP.NAME. This allows
almost any Windows application to be driven automatically.

The following subroutine parameters need to be passed or will be returned accordingly:

APP.NAME This must be the name of the Windows application.
Normally this is the name held in the Window Title as
shown exactly on the desktop, e.g.

WORDPERFECT [DOCUMENT1 - UNMODIFIED]

KEYS In the same format as the DOS keyboard e.g.

@F "OC:\wperf\docs\HOSTACCESS.doc" to ALT/F and
open a WordPerfect document.

SUCCESSFUL Returned as 1 if the application was running on the
desktop and the keys were sent to it, 0 if not running.

Note 1      It is recommended that you use DDE if it is available and practical, because using the server name is more accurate and
reliable than depending on APP.NAME.

Note 2      The DOS shell opened through Microsoft Windows cannot accept keys in the DOS keyboard stacker format. Please refer
to the Developer ¢s Guide for more information on passing keystrokes to DOS applications.

DDE

Initiate a DDE channel. PIX.DDE.INITIATE

Retrieve data from another Windows
application.

PIX.DDE.REQUEST

Pass data to another Windows
application.

PIX.DDE.POKE

Send commands to the server. PIX.DDE.EXECUTE.MACRO

Close DDE link. PIX.DDE.CLOSE

 How DDE Works.
 Using DDE with HOSTACCESS.
 Initiate a DDE channel.

How DDE Works

Dynamic Data Exchange (DDE) is used to transfer data between Windows applications.

Two applications that participate in DDE engage in what is known as a DDE conversation. The application that initiates the
conversation is known as the client application, and the application that responds to the client is known as the server application.

Any Windows product that supports DDE as a server application must have a server name. For example, the server name for Word
for Windows is WINWORD and for Quattro Pro it is QPW. To initiate a DDE link with a server application, you would normally use
the server name and this would return a channel number. Using this channel number you would then send commands (normally in
the format of the macro language supported by that server application) and finally close the link with that channel number when all
processing is completed.

When communicating with a server you must also always specify a topic. Server applications can support many topics depending
on which part of that application you want to communicate with. For instance, if you want to request information from Quattro Pro on
a specific spreadsheet, the server name would be QPW and the topic name would be the spreadsheet name.

DDE was designed to form a standard way of communicating between Windows applications. However, the fact that each Windows
application supports DDE differently (or sometimes not at all) makes it more difficult for the novice to understand it or become
involved with it.

If you want to program using DDE, you will have to learn as much,if not more about the server application that you want to talk to,
rather than if you were a direct user of the product itself.

Click here        for information on using DDE with HOSTACCESS.

Using DDE with HOSTACCESS

You can use DDE to use HOSTACCESS as a DDE client to other Windows applications (servers), sending data and instructions
from the host to a Windows application. This gives your own host programs and applications almost total control over any other
Windows product.

Using DDE with HOSTACCESS, you only need to specify the server name for any DDE process. HOSTACCESS automatically
keeps track of channel numbers internally for you.

All Windows applications support a general topic name system. Unless you are setting up more complicated DDE links, this topic
should be more than adequate for most developers. (All of the HOSTACCESS PASS.TOs for Windows use the SYSTEM topic).

You can also use DDE to use HOSTACCESS as a DDE server. You can write Windows programs in such applications as Word or
Excel, which can send and receive data to and from the host software.

Note: You must have a resilient link from the PC to the host. DDE cannot work remotely unless full flow control and error checking
are in place.

Initiate a DDE channel

PIX.DDE.INITIATE is BASIC subroutine that can be called from your application as follows:

CALL PIX.DDE.INITIATE(SERVER.NAME,TOPIC,STATUS)

This subroutine opens a DDE channel with the Windows application known by SERVER.NAME for the given TOPIC. See
PIX.DDE.CLOSE for information on closing a DDE link.

The following subroutine parameters need to be passed or will be returned accordingly:

SERVER.NAME i.e. QPW, 123W, WINWORD, EXCEL.

TOPIC If null then SYSTEM is used as default.

STATUS Returned as a dynamic array where attribute 1 will be 0 if
successful and > 0 otherwise, as follows:

1- Application link not open (no initiate).

2- Timeout.

3- Topic not supported by application.

4- No DDE channels available.

5- Server closed.

6- Server busy.

7- Server NAK.

Click here        for an example.

Click here        for information on DDE.

PIX.DDE.INITIATE Example

CALL PIX.DDE.INITIATE("QPW","SYSTEM",STATUS)

This example would initiate a DDE link between HOSTACCESS as the Client and Quattro Pro for Windows as the server using the
SYSTEM topic.

Retrieve data from another Windows application

PIX.DDE.REQUEST is a BASIC subroutine that can be called from your application as follows:

CALL PIX.DDE.REQUEST(SERVER.NAME,TOPIC,ITEM,DATA,STATUS)

This subroutine allows DATA to be retrieved directly from another Windows application (the server). Most DDE servers have defined
elements which the server knows about (called ITEMS) where specific pieces of information reside.

A successful PIX.DDE.INITIATE must have been made with SERVER.NAME,TOPIC before the DATA can be retrieved.

The following subroutine parameters need to be passed or will be returned accordingly:

SERVER.NAME i.e. QPW, 123W, WINWORD, EXCEL etc.

TOPIC If null, SYSTEM is used as default although this would
tend to be a document name for REQUEST.

ITEM Specific to each Server application. An ITEM may be a
cell reference such as R1C1 for instance from where you
want to receive DATA.

DATA Returned string of DATA from the given ITEM, - an
amount or description for instance. The DATA may
contain delimiters from the SERVER and ITEM, - for
instance, tabs from some spreadsheet applications for
each delimited cell from that spreadsheet

STATUS Returned as a dynamic array where attribute 1 will be 0 if
successful and > 0 otherwise, as follows:

1 - Application link not open (no initiate).

2 - Timeout.

3 - Topic not supported by application.

4 - No DDE channels available.

5 - Server closed.

6 - Server busy.

- Server NAK.

Click here        for information on DDE.

Close DDE link

PIX.DDE.CLOSE is a BASIC subroutine that can be called from your application as follows:

CALL PIX.DDE.CLOSE(SERVER.NAME,TOPIC,STATUS)

PIX.DDE.CLOSE closes a DDE link already established with PIX.DDE.INITIATE. It is recommended that you close any DDE link
when DDE conversation is completed.

The following subroutine parameters need to be passed or will be returned accordingly:

SERVER.NAME i.e. QPW, 123W, WINWORD, EXCEL etc.,

TOPIC If null, SYSTEM is used as default

STATUS Returned as a dynamic array where attribute 1 will be 0 if
link closed OK

Click here        for information on DDE.

Send commands to the server

This subroutine allows commands to be sent to the server application to allow it to be driven and updated automatically. Macro
information should be in the format as specified and documented by the server application. Normally these are macro strings.

PIX.DDE.EXECUTE.MACRO can be called from your application as follows:
CALL PIX.DDE.EXECUTE.MACRO(SERVER.NAME,TOPIC,MACRO,DELIMS,STATUS)

A successful PIX.DDE.INITIATE must have been made with SERVER.NAME,TOPIC before the MACROs can be sent via this
routine.

The following subroutine parameters need to be passed or will be returned accordingly:

SERVER.NAME i.e. QPW, 123W, WINWORD, EXCEL etc.,

TOPIC If null, SYSTEM is used as default

MACRO A dynamic array of MACRO command(s) and their
arguments that you want to pass through DDE to the
server application.

DELIMS A pair of characters used to wrap around each DDE
command specified in MACRO above. If null, defaults
to "[]".

Most Server applications need to be sent the macro
command(s) within delimiters, i.e. [command macro1]
[command macro2][etc.] It was found that some
Windows servers use different characters such as "{ }"
for Quattro Pro (QPW).

This routine will send each MACRO wrapped in
DELIMS as one big DDE string.

STATUS returned as a dynamic array where attribute 1 will be 0
if successful and > 0 otherwise, as follows:

1- Application link not open (no initiate)

2- Timeout

3- Topic not supported by application

4- No DDE channels available

5- Server closed

6- Server busy

7- Server NAK

To help with debugging, STATUS can be passed as follows:

97 Single Mode. Send each MACRO array element as a separate DDE
execute. For instance, Quattro Pro has a 128 byte limit.

98 Monitor on. Display the DDE string exactly as it will be passed on the
screen.

99 Single mode and monitor (combination of 97 and 98).

Click here        for information on DDE.

PIX.DDE.EXECUTE.MACRO Example

SERVER.NAME = "WINWORD"
TOPIC = "SYSTEM"
WIN.PROGRAM.NAME = "D:\WINWORD\WINWORD.EXE"
CALL PIX.DDE.INITIATE(SERVER.NAME,TOPIC,STATUS)
IF STATUS<1> # 0 THEN

STATE = 1 ; * foreground and normal
CALL PIX.WIN.RUN(WIN.PROGRAM.NAME,STATE,SUCCESSFUL)
IF SUCCESSFUL THEN

CALL PIX.DDE.INITIATE(SERVER.NAME,TOPIC,STATUS)
END

END
IF STATUS<1> = 0 THEN

MACRO = ""
MACRO<1> = 'FileOpen.Name = "D:\WINWORD\DOCS\LETTER.DOC"'
MACRO<2> = 'FilePrint'
CALL PIX.DDE.EXECUTE.MACRO(SERVER.NAME,TOPIC,MACRO,"",ST)
CALL PIX.DDE.CLOSE(SERVER.NAME,TOPIC,ST)

END
This example initiates a DDE session with Word for Windows and the SYSTEM topic. If a DDE session cannot be started, Word for
Windows is started. If OK, LETTER.DOC is retrieved and printed to the default printer. You could easily carry on with the macro to
close the opened document or carry out a mailmerge.

PIX.DDE.POKE

PIX.DDE.POKE is a BASIC subroutine that can be called from your application as follows:
CALL PIX.DDE.POKE(SERVER.NAME,TOPIC,ITEM,DATA,STATUS)

This subroutine allows DATA to be passed directly to another Windows application (the server). Most DDE servers have defined
elements that the server knows about (called ITEMS) which can accept information from DDE clients.

A successful PIX.DDE.INITIATE must have been made with SERVER.NAME,TOPIC before the DATA can be sent.

The following subroutine parameters need to be passed or will be returned accordingly:

SERVER.NAME I.e. QPW, 123W, WINWORD, EXCEL etc.

TOPIC If null, SYSTEM is used as default, although this would
tend to be a document name for POKE.

ITEM Specific to each server application. An ITEM may be a cell
reference such as R1C1 for instance into which you want
to send DATA.

DATA Any string of DATA valid for the given ITEM, - an amount
or description for instance. The DATA may contain
delimiters that the SERVER and ITEM will recognize - for
instance, tabs for some spreadsheet applications to force
each delimited field into separate cells.

STATUS Returned as a dynamic array where attribute 1 will be 0 if
successful and > 0 otherwise, as follows:

1 - Application link not open (no initiate).

2- Timeout.

3- Topic not supported by application.

4- No DDE channels available.

5- Server closed.

6- Server busy.

7- Server NAK.

Click here        for information on DDE.

GUI TOOLKiT

HOSTACCESS allows you to design a sophisticated Windows-style interface for all of your PICK-based applications, using the GUI
TOOLKiT. The following topics describes the GUI TOOLKiT, and the PICK BASIC subroutines which you can use to implement a
GUI for your host application.

AiF escape sequences are used within these subroutines and are also available to the programmer if required.

Click here        for a list of available subroutines.

GUI TOOLKiT Subroutines

To use the GUI TOOLKiT, you need to call PICK BASIC subroutines from within your application. You can call a subroutine from
your application as follows:

CALL name(parameter1, parameter2, ...)

Where:

name Is the name of the subroutine.

parameter1,
parameter2, ...

Are the parameters.

The following tables give a list of all of the PICK BASIC subroutines currently available in the GUI TOOLKiT, and describe their
functions.

Screen Sculpting Subroutines.
Loading controls.
Managing contols.
Commands.
Grids.
Secondary Windows.
Control Events.
Utilities.

Screen Sculpting Subroutines

These subroutines handle the sculpting features of HOSTACCESS.

 Subroutine Name (PIX, ...)

SCULPTURE.MODE Turns sculpture mode on or off.

SCULPTURE.BOX Draws a sculpted box.

SCULPTURE.LINE Draws a sculpted line.

SET.LINE.COLOURS Changes default sculpture colours.

Loading Controls

 All the GUI subroutines are prefixed PIX.GUI.

Subroutine Name (PIX.GUI ...)

CONTROL.LOAD Loads all types of controls.

LOAD.CHECK Creates a check box control.

LOAD.COLOR Changes the default control colors.

LOAD.DROPCOMB Creates a drop-down combo box.

LOAD.DEFGROUP Creates a base control group.

LOAD.EDIT Creates a edit box control (single or multiple line).

LOAD.GROUP Creates a group of specified controls.

LOAD.IMAGE Draws a static image.

LOAD.PUSHBUTTON Creates a push-button control with graphics image.

LOAD.LABEL Creates a text label with a specified font.

LOAD.LIST Creates a read only List box.

LOAD.RADIO Creates a radio button control.

LOAD.STRING Creates a string list, for contents of list/combo boxes.

LOAD.SIMCOMB Creates a simple combo box.

LOAD.TEXTBUTTON Creates a push-button control with text.

Managing Controls

 All the GUI subroutines are prefixed PIX.GUI

Subroutine Name (PIX.GUI ...)

ACC.KEY Attaches an accelerator key to a control.

ALT.EVENT Returns an alternate message.

CONTROL.GRAYED Grays out (disables) a control.

CONTROL.READ.VALUE Reads the contents of a control.

CONTROL.SET.FOCUS Set the input focus of a control.

CONTROL.SET.VALUE Sets the contents of a control

CONTROL.UNGRAYED Un-grays (enables) a control.

{CONTROL.UNLOAD Destroys a control.

HIDE.CONTROL Hides a specific control.

MSG.BOX Display a message box.

SHOW.CONTROL Shows a specific control.

Command Subroutines

 All the GUI subroutines are prefixed PIX.GUI.

Subroutine Name (PIX, ...)

LOAD.COMMAND Create commands for toolbars, toolboxes and menus.

LOAD.MENU Adds commands to a menu.

LOAD.TOOLBAR Creates a toolbar on top of session screen.

LOAD.TOOLBOX Creates a floating toolbox.

MENU.INSTALL Displays menus on the menu bar.

Grid Subroutines

 All the GUI subroutines are prefixed PIX.GUI.

Subroutine Name (PIX.GUI ...)

LOAD.GRID Creating a grid

GRID.CLEAR Clearing a grid.

GRID.COLWIDTH Changing column widths.

GRID.DELETE Deleting rows.

GRID.FOCUS Setting focus to the grid.

GRID.POSITION Obtaining the current grid position.

GRID.SCROLLBARS Setting scrollbars.

LOAD.VBX Loading a VBX control.

Secondary Windows

 All the GUI subroutines are prefixed PIX.GUI.

Subroutine Name (PIX, ...)

SEC.ACTIVE Gives a secondary window focus

SEC.CLOSE Close a secondary window

SEC.OPEN Open a secondary window

Control Events

 All the GUI subroutines are prefixed PIX.GUI.

Subroutine Name (PIX, ...)

CONTROL.EVENT Enables reporting of events for a control.

GET.EVENT Collects events from controls.

SET.TIMER Enables timed events

Utilities

This GUI subroutine is prefixed PIX.GUI.

Subroutine Name (PIX, ...)

SELECTION Select an item from a list

Screen Layout

For clarity, the positioning and drawing of the screen is performed in a grid method. The top left hand corner of any window has the
grid co-ordinates of 0,0, and the bottom right can be 23, 79. Each character displayed upon the window takes up one cell, or grid
row and column position.

Co-ordinates are given as (X, Y), where X is the number of characters across the screen, and Y is the number of vertical characters
down the screen.

Note: the top-left corner is position 0,0 - not position 1,1.

Many of the PICK BASIC subroutines described in the following sections have a POSITION parameter, with X and Y co-ordinates.
Unless otherwise stated, you can assume that these parameters use the standard (X,Y) system as described here.

Click here        to see a diagram of this coordinate system.

Coordinate System diagram

Sculpting the Screen

You can quickly and simply produce a Windows look and feel to all of your PICK applications, with a minimal change to code, using
sculpting. This feature allows you to:
· Draw a box of any size
· Use any available colour for the line
Using different colours allows you to effect a raised or sunken look. With the ability to draw boxes within other boxes, you can give a
typical GUI effect as seen in other Windows products.

A sculpted image is produced by shading sides of a picture, to mimic the shading produced by light falling on a raised or sunken
image. So, when drawing a sculpted box the top and left sides of the box are shaded one colour, and the bottom and right sides of
the box are shaded another colour.

For example, to produce an image of a sunken box, you would need to shade the top/left sides a dark colour, and the bottom/right
sides a light colour. We recommend that you stick with the Windows colours of BLACK,WHITE for best effect.

Click here          for a list of screen sculpting subroutines.

Creating and Showing Sculpture

We have provided a number of subroutines for you to call that displays the sculpture effects. These can be displayed :
· Via a single master subroutine, PIX.GUI.LOAD.SCREEN. All your screen details can thus be held globally and loaded via one

subroutine rather than the programmer having to call each subroutine individually for each effect.
· Via individual subroutines, one for each type of screen effect. For example to draw a sculptured box use PIX.SCULPTURE.BOX.

Click here          for a list of screen sculpting subroutines.

Loading All types of Screen Effects

To load all types of screen effects into HOSTACCESS ¢s memory, call the following subroutine:
CALL PIX.GUI.LOAD.SCREEN(SCREEN.DETAILS,ERROR)

Where:

SCREEN.DETAILS A dynamic array containing screen effects. This
subroutine allows you to use GUI screen effects as
well as HOSTACCESS ¢s other screen effects.

ERROR Returns 1 if error (for future use)

Click here          for an example.

Click here          for a list of screen sculpting subroutines.

Screen Effects Example

Below are examples of how you can load screen effects using PIX.GUI.LOAD.SCREEN. This is an example and not a demonstrable
screen.
SCREEN.DETAILS = “”
SCREEN.DETAILS<-1> = “SCOLOR,BLACK,WHITE”
SCREEN.DETAILS<-1> = “SBOX,1,1,78,21,RAISED,BLACK,WHITE”
SCREEN.DETAILS<-1> = “SBOX,10,20,20,1”
SCREEN.DETAILS<-1> = “SLINE,1,11,78,H,WHITE”
SCREEN.DETAILS<-1> = “COLOR,WHITE,BLUE”
SCREEN.DETAILS<-1> = “BOX,5,2,10,10,SINGLE,SHADOW,EXPLODE,WHITE,RED”
SCREEN.DETAILS<-1> = “BOX,40,2,10,10, DOUBLE,,,WHITE,RED”
SCREEN.DETAILS<-1> = “LINE,5,5,10,5,SINGLE,MERGE,GREEN”
SCREEN.DETAILS<-1> = “TEXT,0,23,This is Line 23”
SCREEN.DETAILS<-1> = “SPACE,30,23,20”
CALL PIX.GUI.LOAD.SCREEN(SCREEN.DETAILS,””)
Click here        for a description of SCREEN.DETAILS.

SCREEN.DETAILS

SCREEN.DETAILS is a dynamic array of screen effects that can be loaded at a given time. They include many of HOSTACCESS ¢s
GUI and non GUI effects. Each parameter is separated by a comma. Only the first parameter is common through all of the screen
effects, this being the first parameter (TYPE).

TYPE Description

SLINE Draws a Sculpted Line. Parameters required are ¢SLINE ¢,
X, Y, LENGTH, TYPE, COLOUR. See PIX.SCULPTURE.LINE 
for details on these parameters.

SBOX Draws a Sculpted Box. Parameters required are ¢SBOX ¢, X,
Y, W, H, APPEARANCE, F/COLOUR, B/COLOUR. See
Drawing Sculpted Boxes    for details on these parameters.

SCOLOR or
SCOLOUR

Sets the colour for use in Sculpted line drawing. Parameters
required are ¢SCOLOUR ¢, F/COLOUR, B/COLOUR. See
PIX.SCULPTURE.LINEfor details on these parameters.

LINE Draws a character type line. Parameters required are ¢LINE
¢, X1, Y1, X2, Y2, SINGLE or DOUBLE, MERGE, COLOUR.
The parameters SINGLE, DOUBLE and MERGE are text
literals to explain the line effects. See PIX.DRAW.LINE for
details on these parameters.

BOX Draws a character type box. Parameters required are ¢BOX
¢, X, Y, W, H, LINETYPE, SHADOW, EXPLODE, F/COLOUR,
B/COLOUR. The parameters SHADOW and EXPLODE are
text laterals to explain the BOX effects. See PIX.DRAW.BOX   
for details on these parameters.

TEXT Displays text on the screen as you would normally with the
CRT @ function in DATABASIC. Parameters required are
¢TEXT ¢, XPOS,YPOS,OUTPUT.

SPACE Displays spaces on the screen as you would normally with the
CRT @ function in DATABASIC. Parameters required are
¢SPACE ¢, XPOS,YPOS, NO.SPACES.

COLOUR or
COLOR

Sets HOSTACCESS’s foreground and background colours.
Parameters required are ¢COLOUR ¢, F/COLOUR,
B/COLOUR. See PIX.SET.COLOUR for details on these
parameters. (Option D will always be set from this routine)

Turning Sculpture Mode on/off

To turn sculpture mode on or off, call the following subroutine from your application:
CALL PIX.SCULPTURE.MODE(MODE, CLEAR)

Where:

MODE ¢ON ¢    - Turns Sculpture mode on
 ¢OFF ¢ - Turns Sculpture mode off

CLEAR ¢C ¢    -        Existing sculpture is cleared.
Null - Existing Sculpture is left, if used in conjunction with Mode
¢ON ¢.

To draw a complete sculpted screen very quickly, draw your screen, then set sculpture mode to on.

You can also use this routine to just clear sculpted lines and boxes, without switching mode. This stops the screen giving the effect
of a wobble.

Note: You must have sculpture mode on to display any sculpted lines or boxes.

Click here          for a list of screen sculpting subroutines.

Drawing Sculpted Boxes

To draw a sculpted box, call the following subroutine from your application:
CALL PIX.SCULPTURE.BOX(POSITION, APPEARANCE, COLOURS)

Where:

POSITION X, Y, W, H, where X, Y is top left co-ordinate and W, H is
the width and height of the box. Home co-ordinate of
screen is 0,0.

APPEARANCE "SUNKEN" (the default): makes box appear sunken.
"RAISED": makes box appear raised.
Uses default Sculpture colours unless COLOURS is
specified.

COLOURS Colour of top and left sides of box and colour of bottom
and right of box. Specified as standard colour literal, e.g.
"BLACK, WHITE" . If not used, default colours are last
specified colours for sculpture used.

Click here          for a list of screen sculpting subroutines.

Click here        for an example.

Sculpted Box Example

001 REM *** Example 1
002 REM *** draw a Sculptured box at (10,2), height 5,
003 REM *** width 10, and colour BLACK (top/left) and
004 REM *** colours WHITE (bottom/right) use:
005 REM ***
006 CALL PIX.SET.COLOURS('BLACK,WHITE','D') ; * Set colors of screen.
007 PRINT @(-1) ; * Clear Screen
008 PRINT "Examples of Sculptured Boxes ":
009 CALL PIX.SET.LINE.COLOURS("BLACK,WHITE") ; * Set Sculpture
colours
010 CALL PIX.SCULPTURE.MODE("ON",'C') ; * Turn Sculpture
on
011 CALL PIX.SCULPTURE.BOX("20,6,10,5","","") ; * Draw Sculpted Box
012 CALL PIX.SCULPTURE.BOX("40,6,10,5","RAISED","") ; * Draw Sculpted Box
013 INPUT XX: ; * Wait
014 CALL PIX.SCULPTURE.MODE("OFF","") ; * Turn Sculpture
off
015 CALL PIX.SET.COLOURS('GREEN,BLACK','D') ; * Set colours of screen.
016 PRINT @(-1):
017 ***

Drawing Sculpted Lines

To draw a sculpted line, call the following subroutine from your application:
CALL PIX.SCULPTURE.LINE(POSITION, LENGTH, TYPE, COLORS)

Where:

POSITION X, Y co-ordinates of start of line.

LENGTH Length of line (characters).

TYPE "H" - draw a horizontal line (the default)
"V"    - draw a vertical line

COLOUR Colour of line. Specified as standard colour literal, e.g. "BLACK".
By default, the last specified sculpting colour is used.

Click here        for an example.

Sculpted Lines Example

To draw a sculpted horizontal line at (12,14), 10 characters long with colour white, use:
CALL PIX.SCULPTURE.LINE("12,14”,”10”,””,” WHITE")

To draw a sculpted vertical line at (40,0), 23 characters deep with colour red, use:
CALL PIX.SCULPTURE.LINE("40,0”, 23, ”V”,”RED")

Changing Default Sculpture Colours

To change the default sculpture colours, call the following subroutine from your application:
CALL PIX.SET.LINE.COLOURS(COLOURS)

Where:

COLOURS Colour of top and left sides of box and colour of bottom and right
of box. Specified as standard literal, e.g. "BLACK,    WHITE" .

For a list of colours available click here   

Default Sculpture Colour Example

To set the default sculpture colour to (Top/Left) GRAY and (Bottom/Right) WHITE use:
CALL PIX.SET.LINE.COLOURS("GRAY, WHITE")

Using Controls

To properly use the GUI TOOLKiT, you should be familiar with the concept of controls. Controls are named Windows objects,
contained in HOSTACCESS ¢s memory. Some controls are actions on other controls (for example, HIDE).

Within HOSTACCESS you can print these controls on to the terminal screen as you would with bold or reverse video. This means
that the terminal screen can have Windows controls feeding data to the Host.

Creating and showing controls.
Control IDs.
Loading all types of controls.
Loading controls Individually.

Creating and Showing Controls

To create and display Windows controls, simply load them into HOSTACCESS ¢s memory:
· Via a single master subroutine, PIX.GUI.CONTROL.LOAD. All of the control details can thus be loaded via one subroutine rather

than the programmer having to call each subroutine individually for each control.
· Via individual subroutines, one for each type of control. For example, the subroutine PIX.GUI.LOAD.RADIOBUTTON will load a

radio button.

Click here        for details of loading controls all at once.

See individual subroutine descriptions for details of loading controls individually.

To get any interaction with the Host system you will need to load the events for each control, and read the values from each control
using different subroutines.

Control IDs

When you create controls you reference the control by a name, for ease of use.

The name can be a numeric or alphabetic name, and can be used as a label for reference throughout your host program.

This name is passed as the Control ID parameter in PICK BASIC subroutines.

Loading All Types of Controls

To load controls into HOSTACCESS ¢s memory all at once, call the following subroutine:
CALL PIX.GUI.CONTROL.LOAD(GUI.APP.NAME, CONTROL.DETAILS, CONTROL.VALUE, ERROR)

Where:

GUI.APP.NAME This variable is useful to run GUI programs from
within GUI programs, i.e. if you "EXECUTE" or
"PERFORM" GUI programs from within GUI
programs. The variable is prefixed automatically to all
control names.
If you intend not to do this then you can pass a null.
i.e. CALL PIX.GUI.READ.CONTROL.VALUE("",...).

CONTROL.DETAILS A dynamic array containing sets of parameters
describing each control to be loaded.

CONTROL.VALUE Not used at present.

ERROR Set to 1 if Error (for future use)

CONTROL.DETAILS

Each parameter in CONTROL.DETAILS is separated by a comma. The first seven parameters must be in the correct order.
· Parameter 1 = the Control ID (its name)
· Parameter 2 = the control type (for example, RADIO)
· Parameters 3 - 7 depend on the control type
· Parameters 8+ are keywords, and can be in any order.
If all 7 primary parameters are not required, you can truncate the string when required but they must be in order specified. Keywords
are only accepted in position eight onwards. For example:

NAME,TYPE,xxx,yyy

NAME,TYPE,xxx,yyy,,,,Key1,...Keyn

The parameters passed to PIX.GUI.CONTROL.LOAD are similar to those passed to each individual subroutine, except that this
routine will loop through a dynamic array of controls, calling the relevant subroutine for each control. The control details passed to
this subroutine for each control will be the same as those passed to each individual Control subroutine.

Loading Controls Individually

You can load single controls with single subroutines.

Each individual subroutine you call takes the following three parameters:

GUI.APP.NAME This variable is useful to run GUI programs from
within GUI programs, i.e. if you "EXECUTE" or
"PERFORM" GUI programs from within GUI
programs. The variable is prefixed automatically to all
control names.
If you intend not to do this then you can pass a null.
i.e. CALL PIX.GUI.READ.CONTROL.VALUE("",...).

CONTROL.DETAILS When loading controls into HOSTACCESS ¢s
memory, you need to pass a set of parameters as
CONTROL.DETAILS. See individual control loading
routines for descriptions of these parameters.

STRING Set to ¢O ¢ if you require output string (AiF) to be
formatted and sent back to the calling program, The
calling program will need to send this command to
HOSTACCESS.

Click here        for an example.

Loading Text Button Example

To load a text push-button use the following:
CALL PIX.GUI.LOAD.TEXTBUTTON(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Text Push-Buttons

To create a push button holding a text label, call the following    subroutine from your application:
PIX.GUI.LOAD.TEXTBUTTON (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS = Control ID, TEXTBUTTON, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the text button.

TEXTBUTTON Text literal TEXTBUTTON

X The X co-ordinate of the left of the button

Y The Y co-ordinate of the top of the button

W Width of the button (characters)

H Height of the button (characters)

Label Textual label associated with that button

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *

TERMITE* HELV8 HELV10 SYSTEM

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Note: To highlight a specific character in the text label as the Accelerator Key, precede the character with an ampersand (&). For
example, ¢Pro&Cess ¢. Click here          for details.

 Program Example

Text Push-Buttons Program Example

061 CALL PIX.GUI.LOAD.TEXTBUTTON ("","FILE,TEXTBUTTON,65,2,9,2,&File,HELV10","")
062 CALL PIX.GUI.LOAD.TEXTBUTTON ("","CANCEL,TEXTBUTTON,65,5,9,2,Cancel","")
063 CALL PIX.GUI.LOAD.TEXTBUTTON("" ,"ADD,TEXTBUTTON,65,11,9,2,Add","")

Image Push-Buttons

To create a push button holding an image, call the following subroutines from your application:

CALL PIX.GUI.LOAD.PUSHBUTTON (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, PUSHBUTTON, X, Y, W, H, Label,
{Key1,...Keyn}

Where:

Control ID The unique name for the push button.

PUSHBUTTON Text literal PUSHBUTTON.

X The X co-ordinate of the left of the button

Y The Y co-ordinate of the top of the button

W Width of the button (characters)

H Height of the button (characters)

Label Textual label associated with that button

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW    * GRAYED UNGRAYED*

PUSH* FRAME PUSHEDIN PUSHEDOUT

SHADOWED NONE LABELLED BITMAP *

ICON FILEID LABELPOS TERMITE

HELV8 HELV10 FILE ID

SYSTEM SUBS FILETYPE FILE

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program example.

Image Push-Buttons Program Example

067 CALL PIX.GUI.LOAD.PUSHBUTTON("","HELP,PUSHBUTTON,65,8,9,2,\bitmaps\f1help.bmp","")
This example is taken from a full program example - click here        for details.

Images

To display a static image call the following subroutine from your application:
CALL PIX.GUI.LOAD.IMAGE (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS = Control ID, IMAGE, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the image.

IMAGE Text literal IMAGE.

X The X co-ordinate of the left of the image.

Y The Y co-ordinate of the top of the image.

W Width of the image (characters)

H Height of the image (characters)

Label Textual label associated with that image.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * CLIPPED SCALED *

PUSH FRAME PUSHEDIN PUSHEDOUT

SHADOWED NONE * LABELLED BITMAP *

ICON FILEID LABELPOS FILE

ID SUBS FILETYPE TILE

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Program Example.

LOAD.IMAGE Program Example

071 CALL PIX.GUI.LOAD.IMAGE (“”,”LOGO,IMAGE,0,0,15,4,\bitmaps\easy\easyacc.bmp”,””)
This example is taken from a full program example - click here        for details.

Check Boxes

To create a check box, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.CHECKBUTTON (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:
CONTROL.DETAILS = Control ID, CHECK, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the check box.

 CHECK Text literal CHECK.

X The X co-ordinate of the left of the check box.

Y The Y co-ordinate of the top of the check box.

W Width of the box (characters)

H Height of the box (characters)

Label Textual label associated with that box.

Key1...Keyn Additional parameters if required, in any order.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *

TERMITE * SYSTEM HELV8 HELV10

LEFT RIGHT * CHECKED UNCHECKED *

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Program Example.

Check Boxes Program Example

115 CALL PIX.GUI.LOAD.CHECKBUTTON ("","CAR,CHECK,47,10,10,1,Car Park,Helv10, LEFT","")
116 CALL PIX.GUI.LOAD.CHECKBUTTON ("","CAT,CHECK,47,11,10,1,Catalogue,Helv10,LEFT","")
This example is taken from a full program example - click here        for details.

Radio Buttons

To create a radio button, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.RADIOBUTTON (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, RADIO, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the radio button.

RADIO Text literal RADIO.

X The X co-ordinate of the left of the button.

Y The Y co-ordinate of the top of the button.

W Width of the button (characters)

H Height of the button (characters)

Label Textual label associated with that button.

Key1...Keyn Additional parameters if required, in any order.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED    * RADIO
GROUP“SEX”

TERMITE * SYSTEM HELV8 HELV10

LEFT RIGHT * CHECKED UNCHECKED *

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

Radio Buttons Program Example

110 CALL PIX.GUI.LOAD.RADIOBUTTON("","DOG,RADIO,33,10,10,1,Dog,Helv10,LEFT,CHECK,SEX","")
111 CALL PIX.GUI.LOAD.RADIOBUTTON ("","BITCH,RADIO,33,11,10,1,Bitch,Helv10,LEFT,SEX","")
This example is taken from a full program example - click here        for details.

String Lists

String lists are used in conjunction with list boxes, simple combo boxes and drop-down combo boxes. String lists contain the entries
used to populate these boxes. String lists are created and managed quite separately to the list/combo boxes which use them.

You can therefore use a single string list in multiple boxes, and create and destroy boxes without destroying the underlying data.

Creating string lists.
Format of string lists.
Loading a string list.

Creating String Lists

To create string lists, either download the strings from the host, or read them in from a PC file. The second form is better suited to
longer lists. Although there is no inbuilt limit to the number of items in such a list, they are not intended for very large lists, because:
· A list box control cannot contain more than 64k of text, e.g. if the average string length is 90 bytes, a list box will not hold more

than approximately 700 items.
· String lists are held in memory at all times.
· The time required to create large lists will be unacceptable to users.
· The time required to populate list/combo boxes with large lists will be unacceptable to users.
The upper ¢realistic ¢ limit is probably a few hundred items.

Format of String Lists

In its simplest form, a string list has an ID (a name), and an ordered sequence of strings. The order defines the default order in
which the strings are displayed in a list or combo box (although this can be changed when the boxes are actually created).

String lists may also store a second, hidden, string for each item. This string is not displayed to the user, but can be used by the host
application as an alternative way for list items to be specified in messages exchanged between HOSTACCESS and the host. See
the examples for details.

 Example    1.
Example 2.
Example 3.
Example 4.

 Program Example.

Loading a String List

To load a string list so it can be used by list type controls, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.STRING(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS Control ID, STRING, TEXT1,...TEXTn

Where:

Control ID The unique name for the control

STRING The text literal STRING

TEXT1,...TEXTn The list of text items to be placed into the String list.

String List Example 1

The host application has a screen on which one of the pieces of information the user has to enter is a country name. The host
application designer chooses to do this with a simple combo box, which has a list of common countries, but will also let the user type
in a country that ¢s not on the list. All the host application wants to get from the user is the text of the country name.

This is best suited to the simple form of string list, without use of hidden strings. The host downloads the list of countries in a string
list, then creates a ¢simple combo ¢ style box. When extracting the selected country, or the name the user entered, HOSTACCESS
sends the relevant text to the host.

To create a String list containing the following list “England, America, Canada, Germany, France” use the following.
CONTROL.DETAILS = “COUNTRIES, STRING, England, America, Canada, Germany, France”
CALL PIX.GUI.LOAD.STRING(“”,CONTROL.DETAILS,””)

String List Example 2

To amend the above list so that the continents were adjacent to the countries for use in a tabular list box, use the following. (where
“>” denotes a tab mark in the data)

CONTROL.DETAILS = “COUNTRIES, STRING, England>Euroupe, America>N.America, Canada>N.America,
Germany>Euroupe, France>Europe”

String List Example 3

The entries in the list contain a ¢display ¢ part, and optionally, a ¢hidden ¢ part. If present, the hidden part is separated from the
display part by a dash or minus sign (so you cannot have dashes in the text). If the hidden part is not given, a default hidden value
will be automatically created if it is ever needed- this will be a string representation of the position of the entry in the string list
(starting from 1; ¢1 ¢, ¢2 ¢, ¢3 ¢ etc.).

List entries to be added/removed are given directly or indirectly. When given directly, a string parameter specifies the list entry in the
format

<display-part> <hidden-part>
If a string parameter starts with a ¢@ ¢ character, it is treated as an indirect entry. The ¢@ ¢ is stripped off, and the remainder
treated as a PC file name. The file contains a list of entries in the above format. It is possible to mix the direct and indirect forms in a
single escape sequence.

Note: the comma, dash and ¢@ ¢ characters cannot normally be used in display strings, because of their special significance in the
above formats.

When adding strings, the second string parameter contains the display text of the existing string list entry before which the new
entries are to be inserted. If missing, the new entries are added to the end of the list.

When removing entries, the hidden parts of entries are ignored.

String List Example 4

Consider a host application that needs to get the user to select a personnel record from a database. Each record includes the
person ¢s name. Each record has a record number. The host application wants to use a dropdownlist style combo box (one in which
the user cannot type an entry, but has to select from the list) to get the name. The host application is not really interested in the text
of the name, but the record number it relates to.

This is more suited to a string list with hidden strings. The ¢display ¢ strings are the names of the people, the hidden strings are the
associated record numbers. The host creates such a string list, then associates it with a ¢dropdown combo ¢ style box. The host
also specifies that it wants to use the hidden strings when exchanging information with HOSTACCESS about the selected list items.
HOSTACCESS will then send back the record number of the selected item, which the host application can use directly.

Create a list of people, with hidden strings (record numbers in some database). The bulk of the list is created from a PC file called
people.lst. To this are added 2 people given directly. The list will be called ¢people ¢ and will eventually contain the following
entries, in the order given:

Display text Hidden text Source

D. Bailey 173 people.lst

M. Woolley 174 people.lst

G. Baker 190 people.lst

F. Carden 191 people.lst

A.Hedgecock 160 direct from host

P.Hall 143 direct from host

Use the following:
CONTROL.DETAILS = “PEOPLE, STRING, @people.lst, A.Hedgecock-160,
P.Hall-143”

people.lst is a standard DOS file with <CR><LF> characters separating each line of text. The file name could also include the full
directory path, for example c:host\data\people.lst. By default, the path is your HOSTACCESS directory. In this example, people.lst
looks like this:

D.Bailey-173

M.Woolley-174

G.Baker-190

F.Carden-191

String List Program Example

075 CALL PIX.GUI.LOAD.STRING
("","GROUP.LIST,STRING,Working,Gundogs,Hounds,Utility,Toys,Terriers","")
This example is taken from a full program example - click here        for details.

Note : The > on line 77 represent the Tab character. Decimal Char(9).

Simple Combo Boxes

To create a simple combo box, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.SIMCOMB(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS Control ID, SIMCOMB, X, Y, W, H, Label,
{Key1,...Keyn}

Where:

Control ID The unique name for the combo box.

SIMCOMB Text literal SIMCOMB.

X The X co-ordinate of the left of the box.

Y The Y co-ordinate of the top of the box.

W Width of the box (characters).

H Height of the box (characters).

Label String List associated with the Simple Combo.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *

TERMITE * SYSTEM HELV8 HELV10

SORT * NOSORT HSCROLL HIDDENMSG

DISPLAYMSG* HSCROLLBAR INITSELECT BORDERON

BORDEROFF *

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

Simple Combo Boxes Program Example

098 CALL PIX.GUI.LOAD.SIMCOMB("","BREED,SIMCOMB,9,10,15,6,BREEDS.LIST,BORDERON","")
This example is taken from a full program example - click here        for details.

Drop-down Combo Boxes

To create a drop-down combo box, call the following    subroutines from your application:
CALL PIX.GUI.LOAD.DROPCOMB(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, DROPCOMB, X, Y, W, H, Label,
{Key1,...Keyn}

Where:

Control ID The unique name for the combo box.

DROPCOMB Text literal DROPCOMB.

X The X co-ordinate of the left of the box.

Y The Y co-ordinate of the top of the box.

W Width of the box (characters).

H Height of the box (characters).

Label String List associated with the drop down Combo.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *
TERMITE * SYSTEM HELV8 HELV10
SORT * NOSORT HSCROLL HSCROLLBAR
HIDDENMSG DISPLAYMSG* BORDERON BORDEROFF *
READONLY READWRITE * INITSELECT TOPBOX

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program example.

Drop-down Combo Boxes Program Example

094 CALL PIX.GUI.LOAD.DROPCOMB ("","GROUP,DROPCOMB,9,4,15,5,GROUP.LIST","")
This example is taken from a full program example - click here        for details.

List Boxes

To create a list box, call the following    subroutines from your application:
CALL PIX.GUI.LOAD.LIST (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS Control ID, LIST, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the list box.

LIST Text literal LIST.

X The X co-ordinate of the left of the box.

Y The Y co-ordinate of the top of the box.

W Width of the box (characters)

H Height of the box (characters)

Label String List associated with the list box.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *
TERMITE * SYSTEM HELV8 HELV10
SORT * NOSORT HSCROLL HSCROLLBAR
HIDDENMSG DISPLAYMSG* INITSELECT SIZEBOX
TOPBOX BORDERON BORDEROFF * TABBED
MORE

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

List Boxes Program Example

102 CALL PIX.GUI.LOAD.LIST ("","CLASS,LIST,33,4,25,6,CLASS.LIST,TABBED","")
This example is taken from a full program example - click here        for details.

Edit Boxes

To create an edit box, call the following    subroutines from your application:
CALL PIX.GUI.LOAD.EDIT (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, EDIT, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the edit box.

EDIT Text literal EDIT.

X The X co-ordinate of the left of the edit box.

Y The Y co-ordinate of the top of the edit box.

W Width of the box (characters)

H Height of the box (characters)

Label Edit text to be passed to the Edit Control.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW* GRAYED UNGRAYED *

TERMITE * HELV8 HELV10 PASSWORD

READONLY READWRITE * NOSELECT SELECT *

HSCROLL VSCROLL BORDERON BORDEROFF *

HSCROLLBAR VSCROLLBAR UPPER LOWER

NOCASECONVERT* LINELEN SCULPTURE INTRANGE

LONGDATE SHORTDATE ABBRDATE SYSTEM

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

Edit Boxes Program Example

085 CALL PIX.GUI.LOAD.EDIT("" ,"NAME,EDIT,9,2,26,1,Lezand, HSCROLL,SCULPTURE","")
086 CALL PIX.GUI.LOAD.EDIT("" ,"D.O.B,EDIT,45,2,10,1,21 Apr 92,SCULPTURE","")
087 CALL PIX.GUI.LOAD.EDIT
("","ADDRESS,EDIT,33,13,25,3,,HSCROLL,VSCROLL,VSCROLLBAR,SCULPTURE","")
This example is taken from a full program example - click here        for details.

Static Labels

To create a static text label, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.LABEL(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, LABEL, X, Y, W, H, Label, {Key1,...Keyn}

Where:

Control ID The unique name for the text label.

LABEL Text literal LABEL.

X The X co-ordinate of the left of the label.

Y The Y co-ordinate of the top of the label.

W Width of the label (characters)

H Height of the label (characters)

Label Text to be printed as Label.

Key1...Keyn Additional parameters if required, in any order - see below.

The following extra keyword parameters are available:

HIDE SHOW * GRAYED UNGRAYED *

TERMITE * SYSTEM HELV8 HELV10

BORDERON BORDEROFF * FONTNAME RIGHT

CENTRE LEFT *

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

Static Labels Program Example

052 CALL PIX.GUI.LOAD.LABEL("" ,"LAB1,LABEL,1,2,6,1,Name : ,Helv10,Right","")
053 CALL PIX.GUI.LOAD.LABEL("" ,"LAB2,LABEL,1,4,6,1,Group : ,Helv10,Right","")
054 CALL PIX.GUI.LOAD.LABEL("" ,"LAB3,LABEL,1,10,6,1,Breed : ,Helv10,Right","")
055 CALL PIX.GUI.LOAD.LABEL("" ,"LAB4,LABEL,37,2,6,1,D.O.B : ,Helv10,Right","")
056 CALL PIX.GUI.LOAD.LABEL("" ,"LAB5,LABEL,25,4,6,1,Class : ,Helv10,Right","")
057 CALL PIX.GUI.LOAD.LABEL("" ,"LAB6,LABEL,25,13,6,1,Address :,Helv10,Right","")
This example is taken from a full program example - click here        for details.

Commands

Commands are controls associated with menus, toolboxes or toolbars. Commands can be associated with text (for use in menus),
or with button images (for use in toolbars and toolboxes).

Once a command has been created, you make it visible to the user by adding it to a ¢command container ¢ object, such as a
toolbar, and then make the toolbar visible. For example, you can load ten command controls into HOSTACCESS ¢s memory and
then associate some of them to menus, some to the Toolbar and some to a floating toolbox.

A single command can also be loaded into all three of the container objects at the same time. For example, a Command control
called FILE can be loaded into a Menu, Toolbar and Toolbox at the same time.

Creating a command.
Command program example.

Creating a Command

To create a command as a control, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.COMMAND (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS Control ID, COMMAND, MENUTEXT,
STATUSTEXT, BUTTONSPEC, {Key1,...Keyn}

Where:

Control ID The Unique name for the Control

COMMAND The text literal COMMAND or CHOICE

MENUTEXT Text to be displayed in Menu item e.g. Save As.. in the
Session menu. If the Command is to be used in a toolbar or
toolbox option then this entry can be null.

STATUSTEXT Single line help text to be displayed on the Status line if
selected.

BUTTONSPEC Specification of button to be displayed in toolbar or toolbox.
Click here          for information on Text push-buttons and
here          for image push-buttons. If Command is to be
used in a menu option then this entry can be null.

Key1...Keyn Are the additional parameters if required in any order (see
below).

The following extra keyword parameters are available:

HIDE SHOW    * CLIPPED SCALED *
PUSH FRAME PUSHEDIN PUSHEDOUT
SHADOWED NONE * LABELED BITMAP *
ICON FILEID LABLEPOS TERMITE
HELV8 HELV10 SUBS TEXTBUTTON
FILETYPE FILEID TILESIZE
TILE MENUTEXT

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Command Program Example

028 CALL PIX.GUI.LOAD.COMMAND("","COMM1,CHOICE,Command1,This is Command 1, \BITMAPS\ICON_BMP\HALT.BMP","")
029 CALL PIX.GUI.LOAD.COMMAND("","COMM2,CHOICE,Command2,This is Command 2, \BITMAPS\ICON_BMP\TYPE.BMP","")
030 CALL PIX.GUI.LOAD.COMMAND("","COMM3,CHOICE,Command3,This is Command 3, \BITMAPS\ICON_BMP\TOOLS.BMP","")
031 CALL PIX.GUI.LOAD.COMMAND("","COMM4,CHOICE,Command4,This is Command 4, \BITMAPS\ICON_BMP\SHUTDOOR.BMP","")
032 CALL PIX.GUI.LOAD.COMMAND("","COMM5,CHOICE,Command5,This is Command 5, \BITMAPS\ICON_BMP\SHREEK.BMP","")
033 CALL PIX.GUI.LOAD.COMMAND("","COMM6,CHOICE,Command6,This is Command 6, \BITMAPS\ICON_BMP\QUESTION.BMP","")
034 CALL PIX.GUI.LOAD.COMMAND("","COMM7,CHOICE,Command7,This is Command 7, \BITMAPS\ICON_BMP\POSTBOX.BMP","")
035 CALL PIX.GUI.LOAD.COMMAND("","COMM8,CHOICE,Command8,This is Command 8, \BITMAPS\ICON_BMP\PHONE.BMP","")
036 CALL PIX.GUI.LOAD.COMMAND("","COMM9,CHOICE,Command9,This is Command 9, \BITMAPS\ICON_BMP\PAPER.BMP","")
037 CALL PIX.GUI.LOAD.COMMAND("","COMM10,CHOICE,Command10,This is Command 10, \BITMAPS\ICON_BMP\

OPENDOOR.BMP","")
This example is taken from a full program example - click here        for details.

Toolbars

The toolbar is also referred to as a speed bar and is placed above the session screen. HOSTACCESS has a standard toolbar that
will be replaced with the newly specified toolbar.

To create a toolbar containing associated commands, call the following subroutine from your application:
CALL PIX.GUI.LOAD.TOOLBAR (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS “Control ID, TOOLBAR, ADD,COMMAND1,...COMMANDn”

Where:

Control ID Is the Unique name for the Control

 TOOLBAR Is the text literal TOOLBAR

ADD Is the literal ¢ADD ¢; to append commands to the current
toolbar. By default, a new toolbar is created (the current
toolbar is over-written)

COMMAND1...
COMMANDn

This is a list of command Control ID ¢s that wish to be
used in the toolbar. Each Command control ID will be
separated by commas or Value marks. The icons /bitmaps
will be loaded from left to right in order specified. If a new
line is required to give multiple toolbars then the text literal
“NEWLINE” as a Command Control Id will be needed.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

This example is taken from a full program example - click here        for details.

 Program Example.

Toolbars Program Example

042 CALL PIX.GUI.LOAD.TOOLBAR("","BAR1,TOOLBAR,ADD,COMM7,COMM8,COMM9,COMM10","")
This example is taken from a full program example - click here        for details.

Floating Toolboxes

The floating toolbox is a set of icons/bitmaps that are placed in a group on the session screen. This toolbox can be moved around
the screen and even minimized if required by the user.

To create a toolbox containing the associated commands, use the following subroutine from your application:
CALL PIX.GUI.LOAD.TOOLBOX(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS     “Control ID, TOOLBOX, X,Y, Title, C1,...Cn,
{Key1,...Keyn}”

Where:

Control ID The Unique name for the Control

TOOLBOX The text literal TOOLBOX

X The X co-ordinate of the toolbox.

Y The Y co-ordinate of the toolbox.

Title The title text to display on the toolbox.

C1... Cn A list of command Control ID ¢s that wish to be used in the
toolbox. Each Command control ID will be separated by commas
or Value marks. The icons /bitmaps will be loaded from left to
right in order specified. If a new line is required to give a block
effect then the text literal “NEWLINE” as a Command Control Id
will be needed.

Key1..Keyn Are the additional parameters if required in any order (see
below)

The following extra keyword parameters are available:

MODELESS MIN ICON BORDEROFF

Default settings are denoted by *. Click here        for details.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

This example is taken from a full program example - click here        for details.

 Program Example.

Floating Toolboxes Program Example

041 CALL PIX.GUI.LOAD.TOOLBOX("","FLOAT1,TOOLBOX,60,2,FLOATING TOOLBAR,COMM1,COMM2,
COMM3,COMM4,COMM5,COMM6","")
This example is taken from a full program example - click here        for details.

Pull Down Menus

You can alter HOSTACCESS ¢s pull down menu that appears at the top of the session screen, adding extra menu items. You
cannot remove HOSTACCESS ¢s menu items, as they are the control options for the HOSTACCESS session. The only existing
HOSTACCESS menu option that can be amended is the Help menu option where items can be appended to the end. New menus
are placed to the left of the Help menu.

To show menus, you need to first create the menu holding pre-defined commands, and then display the menu. This process is
described in the following sections.

Click here          for details of creating commands.

Creating a Menu

To create a menu, holding pre-defined commands, call the following subroutine from your application:
CALL PIX.GUI.LOAD.MENU(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS     “Control ID, MENU, MENUTEXT,
COMMAND1,...COMMANDn”

Where:

Control ID The Unique name for the Control

MENU The text literal MENU

MENUTEXT Title to display on Menu status line as a description of the menu.

COMMAND1...
COMMANDn

A list of command control ID ¢s that you wish to use in a menu set.
Each Command control ID will be separated by commas or Value
marks. The command controls will be loaded from top to bottom in
order specified. If a new line is required to give a separator line to
divide groups of menu items then the text literal “NEWLINE” as a
Command control Id will be needed.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Menu Program Example.

Menu Program Example

043 CALL
PIX.GUI.LOAD.MENU("","MENU1,MENU,EXAMPLES,COMM1,COMM2,COMM3,COMM4,COMM5,COMM6,COMM7,COMM8,COMM9,C
OMM10","")
This example is taken from a full program example - click here        for details.

Displaying Menus

To display a created menu on the Windows Menu bar, with associated commands, call the following subroutine from your
application:

CALL PIX.GUI.MENU.INSTALL(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS “Control ID, MENUINSTALL,
COMMAND1,...COMMANDn”

Where:

Control ID The Unique name for the Control

MENUINSTALL The text literal MENUINSTALL

COMMAND1...
COMMANDn

A list of    Menu Control ID s that will be loaded on the Menu bar.
Each Command control ID will be separated by commas or Value
marks. The Menu controls will be loaded from left to right in order
specified after the last HOSTACCESS menu.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

 Program Example.

Displaying Menu Program Example

044 CALL PIX.GUI.MENU.INSTALL("","MENU,MENUINSTALL,MENU1","")
This example is taken from a full program example - click here        for details.

Grids

The following topics explain the grid features available with HOSTACCESS 6.2 only.

Grids are a way of representing a two dimensional table of information on the screen. This is a very useful way of displaying related
information, across columns, row by row. Additionally, if showing values, this gives the appearance of a spreadsheet ‘look & feel’ to
your application.

Note:    This version of grids in HOSTACCESS is not backwards compatible with any previous product versions. The grid used is a
Visual Basic custom VBX control which specifically works with HOSTACCESS.

When creating a grid, it is necessary to define some of the key elements so that the grid can be displayed. If other features are then
desired, either at a user request, or coded options, then the appropriate calls can be made to ‘turn on/off’ the features.    See the
topics listed below for more detail:

Creating a grid.
Setting scrollbars.
Obtaining the current grid position..
Setting focus to the grid
Changing column widths.
Deleting rows.
Clearing the grid.

Creating A Grid

To load a grid, the BASIC routine PIX.GUI.LOAD.GRID can be called from your host application in the following way:
CALL PIX.GUI.LOAD.GRID(GUI.APP.NAME, CONTROL.DATA, OUTPUT.STRING)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify all
or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

CONTROL.DATA Is the grid parameters, and has the following syntax.
Control id,GRID,startcolumn,startrow,width,height,maxcolumns,maxrows,keywords

Where:

control id Is unique name for the grid.

GRID Is a literal string.

start column Is the starting column position of the grid.

start row Is the starting row position of the grid.

width Is the visible width of the grid on the screen.

height Is the visible height of the grid on the screen.

maxcolumns Is the maximum number of columns in the grid.

maxrows Is the maximum number of rows in the grid.

keywords All keywords are the same as the existing documentation.
Note: GRAYED or GREYED are both acceptable.

output.string If set to literal ‘O’ the command string that would be used to
create the grid is returned and not actioned. If null, this is
returned as null.

Click here          for an example.

Creating A Grid Example

This is an example PICK program which will create a simple grid and set the column headings and widths. In this example, the data
has been manually typed in. An alternative would have been to call the PIX.GUI.GRID.SET.VALUE routine to set the entire grid data.

001 *
002 * Example program to show various Grid program calls
003 *
004 PROMPT ""
005 PRINT @(-1):@(25,0):"Monthly Balances Display"
006 *
007 * Display the grid
008 *
009 CALL PIX.GUI.LOAD.GRID("","FIGURES,GRID,5,2,37,14,4,12,NOROW","")
010 *
011 * Now change the column headings and widths
012 *
013 GRID.PARAM = ""
014 GRID.PARAM<1> = "Month,Opening,Closing,Balance"
015 GRID.PARAM<4> = "5,8,8,8"
016 *
017 CALL PIX.GUI.GRID.SET.PARAM("","FIGURES",GRID.PARAM)
018 *
019 END

Clearing a Grid

To clear a grid, the BASIC routine PIX.GUI.GRID.CLEAR can be called from your host application in the following way:
CALL PIX.GUI.GRID.CLEAR(GUI.APP.NAME, GRID.NAME)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify all
or some controls. This can prove to be useful when wishing
to hide/unload a group of controls.

GRID.NAME Is the name of the grid to clear.

Changing Column Widths

To change the width of a column, the basic routine PIX.GUI.GRID.COLWIDTH can be called from your host application in the
following way.

CALL PIX.GUI.GRID.COLWIDTH(GUI.APP.NAME, GRID.NAME, COLUMN.NUMBER, NEW.WIDTH)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify
all or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

GRID.NAME Is the name of the grid to change.

COLUMN.NUMBER Is the column number whose width is to be changed.

NEW.WIDTH Is the new width of the column.

Deleting Rows

To delete a specific or selected row of a grid, the BASIC routine PIX.GUI.GRID.DELETE can be called from your host application in
the following way.

CALL PIX.GUI.GRID.DELETE(GUI.APP.NAME, GRID.NAME, ROW.NUMBER)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify all
or some controls. This can prove to be useful when wishing
to hide/unload a group of controls.

GRID.NAME Is the name of the grid to change.

ROW.NUMBER Is the row number that you wish to delete. If the row number
is not specified or is set to zero, the selected grid row will be
deleted.

Setting Focus to the Grid

To set focus to a specific column and row of the grid, the BASIC routine PIX.GUI.GRID.FOCUS can be called from your host
application in the following way.

CALL PIX.GUI.GRID.FOCUS(GUI.APP.NAME, GRID.NAME, COLUMN.NUMBER, ROW.NUMBER)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify
all or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

GRID.NAME Is the name of the grid to change.

COLUMN.NUMBER Is the column number that you wish to set focus onto.

ROW.NUMBER Is the row number that you wish to set focus onto.

Obtaining the Current Grid Position

To obtain your current grid position column and row of a grid, the BASIC routine PIX.GUI.GRID.POSITION can be called from your

host application in the following way.
CALL PIX.GUI.GRID.POSITION(GUI.APP.NAME, GRID.NAME, COLUMN.NUMBER, ROW.NUMBER)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify
all or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

GRID.NAME Is the name of the grid to change.

COLUMN.NUMBER Is the column number returned, that the grid is active on.

ROW.NUMBER Is the row number returned, the grid is active on.

Setting Scrollbars

To display/remove scrollbars for a grid, the BASIC routine PIX.GUI.GRID.SCROLLBARS can be called from your host application in
the following way.

CALL PIX.GUI.GRID.SCROLLBARS(GUI.APP.NAME, GRID.NAME,horizontal. vertical)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify all
or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

GRID.NAME Is the name of the grid to change.

HORIZONTAL If set to a value other than zero, will display a horizontal
scrollbar. If zero, no scrollbar is displayed.

VERTICAL If set to a value other than zero, will display a vertical
scrollbar. If zero, no scrollbar is displayed.

 Example.

Setting Scrollbars Example

018 *
019 * Display both scrollbars
020 *
021 CALL PIX.GUI.GRID.SCROLLBARS(“”,”FIGURES”,1,1)

Loading a VBX control

To load a custom VBX control, the BASIC routine PIX.GUI.LOAD.VBX can be called from your host application in the following way.
Custom VBX controls allow the ability to integrate Visual Basic with host software and utilise their features.

CALL PIX.GUI.LOAD.VBX(GUI.APP.NAME, CONTROL.DATA, OUTPUT.STRING)

Where:

GUI.APP.NAME Is an optional application label used to uniquely identify all
or some controls. This can prove to be useful when
wishing to hide/unload a group of controls.

CONTROL.DATA Is the grid parameters, and has the following syntax.
control id,GRID,startcolumn,startrow,width,height,maxcolumns,maxrows,keywords

Where:

control id Is unique name for the grid.

start column Is the starting column position of the grid.

start row Is the starting row position of the grid.

width Is the visible width of the grid on the screen.

height Is the visible height of the grid on the screen.

caption Is the caption to display in the initial window.

filename Is the filename of the VBX custom control that you wish to
load.

VBXname Is the name of the VBX custom.

keywords The following keywords can also be specified :

HIDE, SHOW*, GREYED, UNGREYED*,
SCULPTURE,TERMITE*, SYSTEM, HELV8, HELV10

*denotes default settings.

Note: GRAYED or GREYED are both acceptable.

output.string If set to literal ‘O’ the command string that would be used to
load the VBX is returned and not actioned. If null, this is
returned as null.

Controls

The following topics describe PICK subroutines which perform general control management functions on a named control.

Showing controls.
Hiding controls.
Changing control colours.
Setting input focus to a control.
Using control groups.
Returning an alternative message.
Setting the accelerator character.
Defining a base control group.
Reading the contents of a control.
Setting the contents of a control.
Graying a control.
Un-graying a control.
Unloading a control.
Moving a control.

Click here        for a description of controls.

Showing Controls

To show a specific control or group of controls, call the following    subroutine from your application:
CALL PIX.GUI.SHOW.CONTROL (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID,SHOW

Where:

Control ID The name of the control or control group you wish to
show.

SHOW The text literal SHOW

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

For example, to show the group of controls called SOFTWARE use the following:
CONTROL.DETAILS<1> = ‘SOFTWARE,SHOW’
CALL PIX.GUI.SHOW.CONTROL (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Hiding Controls

To hide a specific control or group of controls call the following    subroutine from your application:
CALL PIX.GUI.CONTROL (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where

CONTROL.DETAILS     Control ID,HIDE

Where:

Control ID The name of the control or control group you wish to hide

HIDE The text literal HIDE.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

For example, to hide the group of controls called HARDWARE use the following:
CONTROL.DETAILS<1> = ‘HARDWARE,HIDE’
CALL PIX.GUI.CONTROL.SHOW (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Changing Control Colours

To change the foreground and background colours for a control, call the following    subroutine from your application:
CALL PIX.GUI.LOAD.COLOUR (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, COLOUR, FOREGROUND, BACKGROUND,
GRAYED COLOUR

Where:

Control ID The control ID of the control to be affected.
To affect all subsequent controls, use the literal
ALLCONTROLS.

COLOUR The text literal COLOR or COLOUR.

FOREGROUND The foreground colour of the control - see below for details.

BACKGROUND The background colour of the control - see below for
details.

Colours Available

You can use the following literal keywords to define your colours:

BLACK BLUE GREEN CYAN

RED MAGENTA BROWN GRAY

LIGHTBLACK LIGHTBLUE LIGHTGREEN LIGHTCYAN

LIGHTRED LIGHTMAGENTA LIGHTBROWN LIGHTGRAY

CLEAR WHITE YELLOW

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Click here          for    an example.

Colours Example

To set the colour of the control called TITLE to RED on WHITE use the following.
CONTROL.DETAILS<1> = ¢TITLE,COLOUR,RED,WHITE ¢

CALL PIX.GUI.LOAD.COLOUR (GUI.APP.NAME, CONTROL.DETAILS, STRING)

To set all proceeding controls to colour BLACK on WHITE use the following:
CONTROL.DETAILS<1> = ¢ALLCONTROLS,COLOUR,BLACK,WHITE ¢

CALL PIX.GUI.LOAD.COLOUR (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Setting Input Focus to a Control

To set the input focus of a control call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.SET.FOCUS (GUI.APP.NAME, Control ID, ERROR)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

Control ID Control ID of the Control that is to gain Focus.

ERROR Set to 1 is Error (for future use)

Using Control Groups

Groups are very useful types of controls. They can be used as the name implies to group a number of associated controls. This
comes into its element when the programmer wishes to hide, show or gray out a sub set of all of the controls. You can define many
groups within your list of controls and you refer to them by one Control ID rather than many.

For example if your application has a number of    buttons referring to actions on an update screen you can put all these action
buttons under one control group. You can then gray-out the group when there is no record on the screen. i.e. on startup and un-gray
the group when a record is present i.e. Amend mode. This saves programming time when developing applications and also reduces
communications traffic to and from HOSTACCESS.

To define a group of controls, call use the following    subroutine from your application:

CALL PIX.GUI.LOAD.GROUP(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID,GROUP, CONTROL1,...CONTROLn

Where:

Control ID The Unique name for the Control

GROUP The text literal GROUP

CONTROL1,...
CONTROLn

A list of Control ID that are contained within this group.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Using Control Groups Example

To assign the following Controls to the group ACTION use the following:

Controls to be assigned are: FILE, LOOKUP, DELETE
CONTROL.DETAILS<1> = ¢ACTION,GROUP,FILE,LOOKUP,DELETE ¢

Returning an Alternative Message

As well as returning a true event to the Host you can also assign a string against a given event for a control. This is useful for
returning keystrokes against an action on a control. For instance you may wish to send the ESCape key when the Cancel
PUSHBUTTON is pressed. At present you can not use the scancode keys to send special keys (CR ES etc.) so the text you require
to send must have the correct decimal characters in the text. (i.e. CHAR(27) for ESCape and CHAR(13) for Carriage Return).

To tell a control or group of controls to return a different string to the host when a specific event occurs, call the following subroutine
from your application:

CALL PIX.GUI.ALT.EVENT (GUI.APP.NAME, Control ID, EVENT, TEXT,””)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

Control ID Control ID of the Control that the event is to be
associated with.

EVENT Event that alternative string is to be associated with.

TEXT Text string to be returned to the Host instead of the
Event.

Click here          for an example.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Returning an Alternative Message Example

To load the alternative events of “/FI<CR>“ to the control FILE which is a TEXTBUTTON set the control details as follows.
CALL PIX.GUI.ALT.EVENT (“”,”FILE”, ”CLICKED”,”/FI”: CHAR(13),””

or, in PIX.GUI.CONTROL.LOAD set
CONTROL.DETAILS<1> = “FILE, ALTEVENT, CLICKED,/FI”: CHAR(13)

CALL PIX.GUI.CONTROL.LOAD (GUI.APP.NAME, CONTROL.DETAILS,””)

Setting the Accelerator Character

This subroutine enables accelerator keys to be attached to controls. Accelerator keys are accessed by pressing the Alternate key
and the letter you have assigned to be the accelerator key. This makes the screen access quicker to use as the user does not need
to use the mouse or tab through to the selected field.

To load a Control with an accelerator key use the following    subroutines.

PIX.GUI.CONTROL.EVENT is a basic subroutine that can be called from your application:
CALL PIX.GUI.ACC.KEY (GUI.APP.NAME, Control ID, KEY,ERROR)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

Control ID Name of the control that the Accelerator key is to be assigned
against

KEY Key letter to be used in association with the ALT key.

ERROR Returns 1 if error (for future use).

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Setting the Accelerator Character Example

To associate the ALT+F keystroke to the FILE control use the Following.
CALL PIX.GUI.ACC.KEY (“”, ¢FILE ¢, “F”)

When used with PIX.GUI.CONTROL.LOAD, this is automatically done for you - you specify the caption with a leading ¢& ¢ before
the desired key. For example,

CONTROL.DETAILS<1> = ¢HELPBUTT, TEXTBUTTON, 10,19,9,2, &Help, HELV8 ¢

CALL PIX.GUI.CONTROL.LOAD(GUI.APP.NAME,CONTROL.DETAILS,””)

Defining a Base Control Group

To specify a base control group, to which all subsequent controls will belong, call the following subroutine from your application:
CALL PIX.GUI.LOAD.DEFGROUP(GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:

CONTROL.DETAILS Control ID, DEFGROUP

Where:

Control ID The unique name for the control

DEFGROUP The text literal DEFGROUP or DEFGRP

Normally you would put one of these controls at the beginning of all the control definitions. This is so you can globally access all of
your controls, for example, so you can SHOW or HIDE them.

Click here          for an example.

Defining a Base Control Group Example

To set all proceeding controls to the STAFF.DEMO group use the following:
CALL PIX.GUI.LOAD.DEFGROUP (GUI.APP.NAME, ”STAFF.DEMO, DEFGROUP”,””)

or, in PIX.GUI.CONTROL.LOAD    set
CONTROL.DETAILS<1> = ¢STAFF.DEMO,DEFGRP ¢

CALL PIX.GUI.CONTROL.LOAD(GUI.APP.NAME,CONTROL.DETAILS,””)

Reading the Contents of a Control

To read the contents of a control call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.READ.VALUE (GUI.APP.NAME, CONTROL/TYPE, VALUE, ERROR)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

CONTROL/TYPE This is set to the control ID and the type of Control with
a comma separating the 2 fields. e.g. “NAME, EDIT”

VALUE This is the returning value of the contents of the control.

ERROR Set to 1 if error has occurred (for future use).

Setting the Contents of a Control

To load the contents of a control, call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.SET.VALUE (GUI.APP.NAME, CONTROL/TYPE, VALUE, ERROR)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

CONTROL/TYPE This is set to the control ID and the type of Control with a
comma separating the 2 fields. e.g. “NAME, EDIT”

VALUE This is the value of the contents of the control that wish
to be loaded.

ERROR Set to 1 if Error has occurred (for future use).

Graying a Control

This subroutine will disable or ¢gray out ¢ a control. If the user is not allowed access to a control it can be disabled by calling this
routine. Disabled controls will remain visible on the screen, but will not send any events to the Host.

To disable a control or a group of controls call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.GRAYED (GUI.APP.NAME, Control ID, ERROR)

Un-Graying a control

This subroutine will enable a control that has previously been disabled. If the user is not allowed access to a control it can be
disabled by calling PIX.GUI.CONTROL.GRAYED and enabled by calling this routine.

To enable a control or a group of Controls call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.UNGRAYED (GUI.APP.NAME, Control ID, ERROR)

Unloading a Control

This routine is used to remove controls that are no longer needed. Removing the controls will remove them from the screen and
from memory. All controls should be unloaded when finished with or you may experience memory problems later on. You can unload
single controls, groups of controls and even the DEFGROUP. (All controls)

To unload a control or a group of Controls call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.UNLOAD (GUI.APP.NAME, Control ID, ERROR)

Where:

GUI.APP.NAME Used to identify a given set of controls. Can be null.

Control ID Name of the control or group of controls that you wish to
disable.

ERROR Set to 1 if Error (for future use).

Moving a control

To change the size and position of a control, call the following    subroutine from your application:
CALL PIX.GUI.REPOSITION (GUI.APP.NAME, X, Y, W, H, Control ID)

where

GUI.APP.NAME Used to identify a given set of controls. Can be null.

X The new X co-ordinate of the control.

Y The new Y co-ordinate of the control.

W The new width of the control.

H The new height of the control.

Control ID Control ID of the control to be repositioned.

Click here          for an example.

Moving a Control Example

To move the control LOGO to a new position at 10,10    with width 20 and depth 3 use :
CALL PIX.GUI.REPOSITION (GUI.APP.NAME, 10,10,20,3,“LOGO”)

Loading Control Events

A control can be loaded into HOSTACCESS ¢s memory, but will have no interaction with the Host system unless told to do so by the
means of events.

Enabling Event Reporting.
Event Keywords Defined.
Enabling Timed Events.
Capturing Events.

Enabling Event Reporting

Before HOSTACCESS can inform you that the user has done anything to a control you need to associate an event against a control.
For example you could load three text buttons into HOSTACCESS ¢s memory and the user can click the mouse on each button.
However, until you load the events associated to these controls, no communication will be sent to the host telling it that these
buttons have been clicked. To analyze the events returned from to the Host use PIX.GUI.GET.EVENT

To enable event reporting for a control or group of controls call the following    subroutine from your application:
CALL PIX.GUI.CONTROL.EVENT (GUI.APP.NAME, CONTROL.DETAILS, OPTIONS)

where Control Details is a dynamic array of events to be globally loaded.
CONTROL.DETAILS = Control ID, EVENT, ON/OFF, EVENTS1,...EVENTSn

Where:

Control ID The unique name for the Control

EVENT The text literal EVENT.

ON/OFF ¢ON ¢ - Control is to return events.
 ¢OFF ¢ - Control is not to return events.

EVENTS...
EVENTSn

Events that are associated with the control.

Note: OPTIONS are not used at present and will need to be set to null.

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Event Keywords Defined

Events can be set with the following keywords.

ENTER ENTER pressed

ESCAPE ESCape pressed

CLICKED Button clicked

BUTTONSTATE Check box or Radio button check state change.

EDITCHANGE Contents of edit box, or the contents of the edit box
part of a simple & drop down combo boxes, have been
changed.

LISTSELECT List box selection changed (List, simple & drop down
combo)

LISTDBCLICKED List box double clicked. (List, simple & drop down
combo)

FOCUS Gained focus - focus has changed from one control to
another. See note below.

TAB Control has been tabbed from.

CLICKEDON Same as Clicked but Control that looses focus will be
returned in Params (see PIX.GUI.GET.EVENT)

SECFOCUS Secondary Window active: the user is trying to change
focus from a secondary window.

SECCLOSE Secondary Window close: the user is trying to close a
secondary window.

LISTSCROLL The user has scrolled off the end of an Incremental
List box.

GRIDCELLCHANGE Grid cell change: a cell has changed in value.

GRIDROWCHANGE Grid row change: a cell on a row has been changed.

Note: If a control has the FOCUS event assigned to it, no other events can be assigned against this control. This stops controls from
sending double events. For example, If you tried to assign FOCUS and CLICKED against a button, you would get an event to say
the button has gained focus, and an event to say the button was clicked.

Click here          for an example.

Event Keywords Example

To enable the events against the Control FILE so the Host is informed if the user presses the Enter key if the control has focus or
the user clicks the mouse over the control, use the following.

CONTROL.DETAILS<1> = “FILE,EVENTS,ON,ENTER,CLICKED”

CALL PIX.GUI.CONTROL.EVENT(GUI.APP.NAME,CONTROL.DETAILS,””)

Enabling Timed Events

You may wish HOSTACCESS to report back to your application ever so often    This is very useful if wish you application to time out
after a given time or run a task after every n seconds.

To enable timed event reporting call the following    subroutine from your application:

CALL PIX.GUI.SET.TIMER(SECONDS,TYPE)Where:

SECONDS Number of seconds before HOSTACCESS returns a timed event

TYPE Set to ONCE if you require HOSTACCESS to respond only once
(after n seconds).

Set to MANY if you require HOSTACCESS to respond more than
once (ever n seconds).

Enabling Timed Events Example

To make your application return the event TI every 60 seconds call the subroutine as follows :
CALL PIX.GUI.SET.TIMER (60,”MANY”)

Capturing Events

This subroutine is normally the central routine which collects the events from the controls. In the case of a fully GUI style program
this routine replaces you INPUT statement. Typically this is used in a loop with CASE statements to action the returned event.

If you are experiencing spurious data being returned from this routine please contact Pixel Innovations for assistance.

To capture the events from HOSTACCESS’s controls call the following    subroutine from your application:
CALL PIX.GUI.GET.EVENT (GUI.APP.NAME, Control ID, EVENT, PARAMS)

where

GUI.APP.NAME Used to identify a given set of controls. Can be null.

Control ID Control ID of the Control that the event is to be
associated with. If the EVENT that is reported is the
TIMED event then this will be set to TI.

EVENT Event that is returned.

PARAMS If the event is CLICKEDON or FOCUS, this is the
Control ID of Control that loses Focus.

If Mouse is turned on, returns “MS” as the Event and
the x & y co-ordinates of the mouse are in PARAMS.
Use the PIX.MOUSE.ON subroutine to turn the mouse
on.

If the event is LISTDBCLICKED, this is the contents of
the selected item from a list box.

Note: If the event is FOCUS, no other events should be specified against the controls. This is to stop double events from being
returned.

Click here          for an example.

Loading Multiple Events Example

Below is an example of how you can load multiple events, capture the response and perform actions on the responses:
 CD=""
*
* Controls
 CD<-1>="OK,TEXTBUTTON,1,1,10,2,&Ok"
 CD<-1>="CANCEL,TEXTBUTTON,13,1,10,2,&Cancel"
 CD<-1>="DATAFIELD,EDIT,3,5,10,1"
*
* Events
 CD<-1>="OK,EVENTS,ON,CLICKED,ENTER"
 CD<-1>="CANCEL,EVENTS,ON,CLICKED"
 CD<-1>="DATAFIELD,EVENTS,ON,FOCUS"
*
* Load the controls and events
 CALL PIX.GUI.CONTROL.LOAD("",CD,"","")
*
* Setup the timer to go at 60 second intervals
 CALL PIX.GUI.SET.TIMER(10,"MANY")
*
* Enable mouse events
 CALL PIX.MOUSE.ON("LEFT")
*
 DONE=0
 LOOP UNTIL DONE DO
*
* Wait until an event occurs
 CALL PIX.GUI.GET.EVENT("",CONTROLID,EVENT,PARAMS)
 BEGIN CASE
* CASE CONTROLID="OK"
* User did something with the "OK" button
 BEGIN CASE
 CASE EVENT="CLICKED" ;* Was it a CLICKED event
 PRINT "OK,CLICKED"
 CASE EVENT="ENTER" ;* Was it an ENTER event
 PRINT "OK,ENTER"
 END CASE

* CASE CONTROLID="CANCEL"
 DONE=1 ;* Cancel was clicked so Exit the program
 PRINT "CANCEL CLICKED"
*
 CASE CONTROLID="DATAFIELD"
* My edit control has gained focus
 BECAUSE=FIELD(PARAMS,",",1)
* This is where it came from
 COMEFROM=FIELD(PARAMS,",",2)
 PRINT "DATAFIELD FROM ":COMEFROM:" BECAUSE OF ":BECAUSE
*
 CASE CONTROLID="TI" ;* Timer event has occured
 GOSUB 100 ;* Process something
*
 CASE CONTROLID="MS"
* user has clicked with left mouse button
 xpos=FIELD(PARAMS,",",1) ;* Collect coordinates
 ypos=field(PARAMS,",",2)
 PRINT "MOUSE CLICKED AT ":xpos:",":ypos
*
 CASE 1
 END CASE
 REPEAT
 CALL PIX.GUI.CONTROL.UNLOAD("",CD,"")
 CALL PIX.MOUSE.OFF ;* Turn off mouse events
 CALL PIX.GUI.SET.TIMER(0,"") ;* Turn off timer events
 STOP
100*
 PRINT "Timer event"
 RETURN

Secondary Windows

Secondary windows are one of the most powerful facilities available to the programmer within the GUI TOOLKiT. They can give your
application the ability to display screens of data off the primary screen. These windows can be closed before returning to the primary
screen or left open for the user to refer back to (Modal / Modeless).

These windows can be configured to be any size for example 10x10,    80x24 or 132x24 to display your data.

Using Secondary Windows.
Designing Secondary Windows.
Opening a Secondary Window.
Closing a Secondary Window.
Giving a Secondary Window Focus.

Using Secondary Windows

Once open the user can reposition, re-size and even minimize the window to review the underlying screen.

The simplest example is from an order entry screen. The application would normally need to repaint the screen if the user wished to
inquire on the customer details. Once the inquiry was made then the screen would need to re-paint the original screen. With
Secondary windows the application can open a Modeless window to display the customer details and come back to the primary
window leaving the details on the screen. The user can then refer to this window, move it around the desktop, re-size the window
and even minimize the window. The user can then close it when required or the application can close it on exit from the order
screen.

These windows can be addressed as you would the primary screen, you can display text as normal but you can also display all the
Windows controls available to you within the developers toolkit.

Designing Secondary Windows

When designing applications using secondary windows the programmer must remember that the host session is most likely not
Multi tasking. Therefore if a window is left open, then its main purpose will be for inquiry and not for update.

You can design your application software to allow hot keys to update screens from any point to any secondary window. However,
your application will need to know what windows are open, which record is currently being updated and even which field they are
currently on.

The created window can be modal or modeless. The window settings (for example, Colours) are set to the startup settings.

Opening a Secondary Window

To open a secondary window call the following    subroutine from your application:
CALL PIX.GUI.SEC.OPEN (GUI.APP.NAME, CONTROL.DETAILS, STRING)

Where:
CONTROL.DETAILS = Control ID, WINDOW, X, Y, W, H, LABEL, {Key1,...Keyn}

Where:

Control ID The unique name for the Control.

WINDOW The text literal WINDOW.

X The X co-ordinate of the window.

Y The Y co-ordinate of the window.

W The width of the window.

H The height of the window.

LABEL The title to be displayed in the secondary window ¢s title
bar

Key1...Keyn Additional parameters if required in any order (see below)

Additional keyword parameters available are:

MIN MAX MODAL BORDERNONE

BORDERNORM BORDERTHICK BORDERTHIN COLOR

NOTITLE

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

If you use this routine, it must be the first line of controls. Only one window can be opened from this routine.

Modal / Modeless Windows

If you open a modal window, the user can not have access to the previous or primary window until this window has been closed. If
you open a modeless window, the user can gain focus to any other opened window. The host program must control each window in
turn. So, to run multiple activities in each window, your host program must be able to control this.

Closing a Secondary Window

To close a secondary window call the following subroutine from your application:
CALL PIX.GUI.SEC.CLOSE (GUI.APP.NAME, Control ID, STRING)

Alternatively, you can use the PIX.GUI.CONTROL.LOAD subroutine.

Giving a Secondary Window Focus

When opening a secondary Window it immediately gains focus. If your application has more than one Window open and you wish to
set focus to another Window or the Base window then call the following subroutine from your application :

CALL PIX.GUI.SEC.ACTIVE(GUI.APP.NAME,Control ID, STRING)

Note : To gain focus to the Base/ Primary Window set the Control ID = “_BASE”

Message Boxes

This routine will display a Windows style Message box with the ability to enter options on exit. Its main use is for messages that
require confirmation. The message box will be created as a modal style secondary window. (Cannot return to primary window until
window cleared.) The response to the message box will be returned to the calling program.

To display a Message box call the following    subroutine from your application:
CALL PIX.GUI.MSG.BOX (TITTLE, MESSAGE, TYPE, ERROR)

Where:

TITLE Message to appear in Windows Header bar.

MESSAGE Text message to appear in Message box

TYPE Button Style. The buttons set as default (i.e. those that respond
when the ENTER key is pressed) are shown in bold. The
following combinations are available:

OK , CANCEL

OK , CANCEL

YES , NO , CANCEL

YES , NO , CANCEL

YES , NO , CANCEL

OK

YES , NO

YES , NO

ERROR 1 = NO

2    = YES or OK

3    = CANCEL, escape pressed, or message box closed

 Example.

Message Box Example

CALL PIX.GUI.MSG.BOX(“Error Message”,“An Error Has occurred in the Application”,
“OK,CANCEL”,ERROR)

Useful Utilities

If you design any useful utilities that you don ¢t mind making accessible to others, please send them to Pixel and we can include
them in future releases of the Host programs and documentation.

For example, here is a useful dialog box type selection screen that can be included into your applications if a selection is required.

PIX.GUI.SELECTION

This subroutine allows the user to select an item from a list. It is built up from an edit box , a list box and some user installable text
push-buttons. The box is placed in a secondary window. It will destroy itself when finished and return the selected item and a name
of the text push-button which the user selected, (if one was selected).

To use this utility, call the following subroutine from your application:
CALL PIX.GUI.SELECTION(BUTTONS, TITLES,DEFAULT,LIST,SELECTION, CONTROL.ID)

Where:

BUTTONS A comma separated list of button names i.e. OK,CANCEL

TITLES Comma separated text for window title, edit box text and list
box text

DEFAULT This contains one of the contents of the USER.LST. When the
screen is displayed this item will be highlighted.

LIST A list of items that the user may select from.

SELECTION Is returned, the text of the item that the user choose

CONTROL.ID Is returned, the name of the installed button the user clicked
on or LISTDBCLICKED if the user double clicked the item.
The user may also close the window by using Alt-F4. If this
happens, the control.id will be ALTF4.       

PIX.GUI.SELECTION Example

Below is an example of how to use this subroutine :
001 EQU TAB TO CHAR(9)
002 LIST="PETER,PAUL,JOHN,DAVID,HAZEL,JOHN MIKE,PAUL,PETER,SIMON,STEVE,UTAH,BILLY,ANDREW,STEVE"
003 TITLES="Choose a person,Se&lection,pick &from"
004 BUTTONS="&OK,Cancel,Help,,Delete,,Exit"
005 CONTROL.ID=""
006 CALL PIX.GUI.SELECTION(BUTTONS,TITLES,"PETER",LIST,SELECTION,CONTROL.ID)
007 PRINT "On return :":SELECTION,CONTROL.ID
eoi 007

Keyword Definitions

The following table describes, in alphabetic order, all of the keywords you can use as optional parameters in PICK BASIC
subroutines. Defaults are shown with an asterisk (*) character.

ABBRDATE HELV10 MODELESS RADIO GROUP

BITMAP HIDDENMSG MORE READONLY

BORDER HIDE NAMECOL READWRITE *

BORDERNONE HSCROLL NAMEROW RIGHT

BORDERNORM HSCROLLBAR NOCASECONVERT* SCALED*

BORDERON ICON NOCOL SCULPTURE

BORDEROFF INITSELECT NODELETE SELECT*

BORDERTHICK INTRANGE NOROW SHADOWED

BORDERTHIN LABELED NONE* SHORTDATE

CENTER LABLEPOS NOSELECT SHOW*

CHECKED LEFT NOSORT SORT

CLIPPED LINELEN NOTITLE TABBED

COLOR LINESOFF NUMCOL TERMITE*

DISPLAYMSG LONGDATE NUMROW TOPBOX

FILEID LOWER PASSWORD UNCHECKED

FRAME MAX PUSH UNGRAYED*

GRAYED MIN PUSHEDIN UPPER

HELV8 MODAL PUSHEDOUT VSCROLL

VSCROLLBAR

ABBRDATE

Validation for a date entered in abbreviated format, for a validated edit box. For example, DD/MM/.

BITMAP

Followed by a .bmp file name, associated with LABELED (if specified.)

BORDER

Border    type: follow with the type of border required. i.e. BORDER, followed by NONE, NORM, THIN, or THICK

BORDERNONE

No border for a secondary window

BORDERNORM

Create a normal border for a secondary window.

BORDERON

Control is surrounded by a box, extending 4 pixels above and below the normal box. You cannot have two bordered controls on
consecutive lines

BORDEROFF

Control is not surrounded by a box

BORDERTHICK

Create a thick border for a secondary window.

BORDERTHIN

Create a thin border for a secondary window.

CENTER

Text is centre-justified for labels within its boundary.

CHECKED

Control is checked when displayed. (RADIO, CHECK controls) Only one radio button within its group will be checked, even if all are
set with checked set. (the last to be loaded)

CLIPPED

Clips bitmap to image co-ordinates (does not re-scale)

COLOR

Colour of a secondary window.

DISPLAYMSG

Display the normal text in the string list. This is returned by PIX.GUI.READ.VALUE.

FILEID

The following keywords will be the file ID (e.g. HOST.EXE) and the next keyword will be the resource number    (e.g. 103)

FRAME

No border

GRAYED

Control is inactive when created

HELV8

Control uses the Helvetica 8    font to display the text

HELV10

Control uses the Helvetica 10 font to display the text

HIDDENMSG

Display the hidden text in the string list. This is returned by PIX.GUI.READ.VALUE

HIDE

Control is hidden when created

HSCROLL

Control has ability to scroll horizontally

HSCROLLBAR

Control has horizontal scroll bar attached

ICON

If ICON specified then the following keywords will be the Icon: .ico file, associated with LABELED if specified

INITSELECT

If specified, the following keyword will be the item in the string list to be highlighted when control gains focus. e.g. If a string called
LETTER contained items ¢A ¢ to ¢G ¢ and ¢C ¢ was selected to be highlighted, when displayed the item ¢C ¢ would be
highlighted. i.e. ¢INITSELECT, C ¢

INTRANGE

When specified, gives an integer number range for validated edit boxes. Range is defined by the following two keywords lownum
and highnum

LABELED

If labeled with a bitmap then text (label) appears with the bitmap

LABLEPOS

If LABLEPOS specified then the following keywords will be the (X,Y) position of the label. e.g. LABLEPOS, 10,10

LEFT

Text associated with Radio and Check controls is placed to the left of the control or Text will be Left justified for Labels within its
boundary

LINELEN

If LINELEN specified then the following keyword will be the maximum number of characters allowed to be entered. This is the total
limit, not just the limit on a single line. (Multi-line edit box user take note) Default is 64K characters.
For example, LINELEN, 30 will set the maximum line length to 30

LINESOFF

Does not display Grid lines in Grid Controls

LONGDATE

validated date entered in long format, for a validated edit box. For example, 12 December 1994

LOWER

Convert returning text to lower case

MAX

Creates a maximize box for a secondary window.

MIN

Creates a minimize box for a secondary window.

MODAL

The control is modal.

MODELESS

The control is modeless

MORE

Sets how many elements the list box will hold, for incremental list boxes. Follow this by the number of elements. You can use this
feature to create list boxes with room for many entries, and create corresponding string lists with only a few items. This allows you to
update the list box incrementally as the user scrolls downwards

NAMECOL

Allows Columns to have named titles in Grid Controls

NAMEROW

Allows Rows to have named titles in Grid Controls

NOCASECONVERT*

Text returned from control is not case-converted

NOCOL

Specifies no titles for Columns in Grid Controls

NODELETE

Makes Grid control READONLY

NOROW

Specifies no titles for Rows in Grid Controls

NONE

No shadow

NOSELECT

Contents not selected when control receives focus

NOSORT

String list is not sorted when loaded into a list/combo box

NOTITLE

Set no title for a secondary window

NUMCOL

Gives Column titles as numbers in Grid controls

NUMROW

Gives Rows titles as numbers in Grid controls

PASSWORD

Text is encrypted to display password character. Default set to #

PUSH

Displays image with a button border. When image pushed by user, the border colors are swapped

PUSHEDIN

Image sunken.

PUSHEDOUT

Image raised.

RADIO GROUP

This is the Control ID of the Group for a set of Radio buttons. You will not need to specify this group using the GROUP control type if
placed as a keyword

READONLY

Control is read-only, No changes can be made to the data

READWRITE

Control is Read/Write. Changes can be made to the data

RIGHT

Text associated with radio and check controls is placed to the right of the control (or text is right-justified for labels within its
boundary).

SCALED

Scales bitmap to image co-ordinates

SCULPTURE

Control is surrounded with sculpted line drawing.

SELECT

Contents selected when control receives focus

SHADOWED

Give image a shadow

SHORTDATE

Validation for a date entered in short format, for a validated edit box. For example, DD/MM/YY.

SHOW

Control is shown when created.

SORT

String list is alphabetically sorted when loaded into a list/combo box

TABBED

Allows you to present your list box in tabular columns. The String list loaded needs each column of data separated by a TAB. e.g.
¢STRING, Andy<TAB>18, Francis<TAB>13 ¢ where <TAB> is char(9)   

TERMITE

Control uses the TERMiTE display font to display the text

TOPBOX

If specified, the following keyword will be the item in the string list to be placed at the top of the box. e.g. If a string called LETTERS
contained items ¢A ¢ to ¢Z ¢ and ¢F ¢ was selected to be at the top of the box, when displayed the user could scroll back to ¢A
¢ . If not specified then ¢A ¢ would be at the top of the box. i.e. ¢TOPBOX, F ¢.

UNCHECKED

Control is not checked when displayed. (RADIO, CHECK Controls) One Radio button within it ¢s group will have the Checked state
even if all are set with NO Check set. (the last to be loaded).

UNGRAYED

Control is active when created.

UPPER

Convert returning text to upper case.

VSCROLL

Control has ability to scroll vertically.

VSCROLLBAR

Control has vertical scroll bar attached.

Example Programs

The following topics are example programs.

The first program (BOB) uses PIX.GUI.CONTROL.LOAD.

The second program (RBOB) calls the individual loading subroutines for each type of control.

The third program example (ORDER) is a fully-working program with events returned. All these programs are available for use in the
Host programs. Please look at and amend these if needed.

The PIX.B.O.B Program.
PIX.GUI.FORM.F for PIX.B.O.B.
The PIX.R.B.O.B Program.
ORDER Program Example.
ORDER.CONTROLS for ORDER Example.
ORDER.SCREEN for ORDER Example.
ORDER.EVENTS for ORDER Example.

The PIX.B.O.B Program

001 REM *** Example Program to Use most of the Controls available.
002 REM *** This program calls PIX.GUI.CONTROL.LOAD
003 REM *** See eg PIX.R.B.O.B for same prog using subroutine method.
004 REM ***
005 REM *** Author : Andy Hedgecock 23 Sept 1994
006 REM ***
007 REM ***
008 REM *** Set DEFGROUP for all Controls that follow.
009 REM *** Note HOSTACCESS does not put Commands,Toolbars,Toolboxes &
010 REM *** Menus into Group. We hope to change this later.
011 REM ***
012 CALL PIX.SET.COLOR('BLACK,WHITE','D') ; * Set colors of screen.
013 PRINT @(-1):
014 REM ***
015 REM *** Open file that contains array of all the Controls.
016 REM ***
017 OPEN 'PIX.GUI.FORM.F' TO DBASE ELSE STOP
018 REM ***
019 REM *** Read in the Controls.
020 REM ***
021 READ REC FROM DBASE,'B.O.B' ELSE STOP
022 REM ***
023 REM *** Turn Sculpture ON
024 REM ***
025 CALL PIX.SCULPTURE.MODE('ON','C')
026 REM ***
027 REM *** Lood the Controls
028 REM ***
029 CALL PIX.GUI.CONTROL.LOAD("",REC,"","")
030 PROMPT ""
031 INPUT XX:
032 REM ***
033 REM *** Turn Sculture OFF and Unload all the Controls
034 REM ***
035 CALL PIX.GUI.CONTROL.UNLOAD("",REC,"")
036 CALL PIX.SCULPTURE.MODE('OFF',"")
037 END
EOI

PIX.GUI.FORM.F for PIX.B.O.B

005 REM *** Set DEFGROUP for all Controls that follow.
006 REM ***
007 MAINGROUP,DEFGROUP,DOG.CONTROLS
008 REM ***
009 REM *** Set Control Colors
010 REM
011 ALLCONTROLS,COLOR,BLACK,LIGHTGRAY
012 REM ***
013 REM *** Load Each Command Control
014 REM ***
015 COMM1,COMMAND,Command1,This is Command 1,\BITMAPS\ICON_BMP\HALT.BMP
016 COMM2,COMMAND,Command2,This is Command 2,\BITMAPS\ICON_BMP\TYPE.BMP
017 COMM3,COMMAND,Command3,This is Command 3,\BITMAPS\ICON_BMP\TOOLS.BMP
018 COMM4,COMMAND,Command4,This is Command 4,\BITMAPS\ICON_BMP\SHUTDOOR.BMP
019 COMM5,COMMAND,Command5,This is Command 5,\BITMAPS\ICON_BMP\SHREEK.BMP
020 COMM6,COMMAND,Command6,This is Command 6,\BITMAPS\ICON_BMP\QUESTION.BMP
021 COMM7,COMMAND,Command7,This is Command 7,\BITMAPS\ ICON_BMP\POSTBOX.BMP
022 COMM8,COMMAND,Command8,This is Command 8,\BITMAPS\ ICON_BMP\PHONE.BMP
023 COMM9,COMMAND,Command9,This is Command 9,\BITMAPS\ ICON_BMP\PAPER.BMP
024 COMM10,COMMAND,Command10,This is Command 10,\BITMAPS\ICON_BMP\OPENDOOR.BMP
025 REM ***
026 REM *** Put Commands into a TOOLBOX, TOOLBAR & MENU
027 REM ***
028 FLOAT1,TOOLBOX,60,2,FLOATING TOOLBAR,COMM1,COMM2,COMM3,COMM4,COMM5,COMM6
029 BAR1,TOOLBAR,TITLE,COMM7,COMM8,COMM9,COMM10
030 MENU1,MENU,EXAMPLES,COMM1,COMM2,COMM3,COMM4,COMM5,COMM6,COMM7,COMM8,COMM9,COMM10
031 MENU,MENUINSTALL,MENU1
032 REM ***
033 REM *** Load Static Labels on Screen.
034 REM *** Note : The examples below use the Fixed font Helv10. For normal screens
035 REM *** these look good but when the screen is reduced to a small size the
036 REM *** font remains fixed and screen are corrupted.(BEWARE)
037 REM ***
038 REM ***
039 LAB1,LABEL,1,2,6,1,Name : ,Helv10,Right
040 LAB2,LABEL,1,4,6,1,Group : ,Helv10,Right
041 LAB3,LABEL,1,10,6,1,Breed : ,Helv10,Right
042 LAB4,LABEL,37,2,6,1,D.O.B : ,Helv10,Right
043 LAB5,LABEL,25,4,6,1,Class : ,Helv10,Right
044 REM ***
045 REM *** Load Textbutton Controls.
046 REM ***
047 FILE,TEXTBUTTON,65,2,9,2,&File,HELV10
048 CANCEL,TEXTBUTTON,65,5,9,2,Cancel
049 ADD,TEXTBUTTON,65,11,9,2,Add
050 REM ***
051 REM *** Load Pushbutton Controls.
052 REM ***
053 HELP,PUSHBUTTON,65,8,9,2,\host\bitmaps\f1help.bmp
054 REM ***

055 REM *** Load Image Controls.
056 REM ***
057 REM LOGO,IMAGE,0,0,15,4,\bitmaps\easy\easyacc.bmp
058 REM ***
059 REM *** Load String Lists for use within Lists, Combos ect.
060 REM ***
061 GROUP.LIST,STRING,Working,Gundogs,Hounds,Utility,Toys,Terriers
062 BREEDS.LIST,STRING,Alaskan Malamutes,Bearded Collies,Belgian Shepherd Dogs,Boxers,Collies

(Rough),Collies (Smooth),Dobermann,G.S.D,Rottweiler,Swedish Valhunds
063 CLASS.LIST,STRING,1.Minor Puppy,2.Puppy,3.Novice,4.Junior,5.Graduate,6.Post

Graduate,7.Limit,8.Open,9.Veteran
064 REM ***
065 REM *** Set Control Colors
066 REM ***
067 ALLCONTROLS,COLOR,BLACK,WHITE
068 REM ***
069 REM *** Load Edit Controls.
070 REM ***
071 NAME,EDIT,9,2,26,1,Lezand,HSCROLL,SCULPTURE
072 D.O.B,EDIT,45,2,10,1,21 Apr 92,SCULPTURE
073 ADDRESS,EDIT,33,13,25,3,,HSCROLL,VSCROLL,VSCROLLBAR,SCULPTURE
074 REM
075 REM *** Load Dropdown Combo containing the list "GROUP.LIST"
076 REM
077 GROUP,DROPCOMB,9,4,15,5,GROUP.LIST
078 REM
079 REM *** Load Simple Combo containing the list "BREEDS.LIST"
080 REM ***
081 BREED,SIMCOMB,9,10,15,6,BREEDS.LIST,BORDERON
082 REM
083 REM *** Load a Tabbed LIST control containing the list "CLASS.LIST"
084 REM ***
085 CLASS,LIST,33,4,25,6,CLASS.LIST,TABBED
086 REM ***
087 REM *** Set Control Colors
088 REM ***
089 ALLCONTROLS,COLOR,BLACK,LIGHTGRAY
090 REM ***
091 REM *** Load Radio Button Controls
092 REM ***
093 DOG,RADIO,33,10,10,1,Dog,Helv10,LEFT,CHECK,SEX
094 BITCH,RADIO,33,11,10,1,Bitch,Helv10,LEFT,SEX
095 REM ***
096 REM *** Load Check Button Controls
097 REM ***
098 CAR,CHECK,47,10,10,1,Car Park,Helv10,LEFT
099 CAT,CHECK,47,11,10,1,Catalogue,Helv10,LEFT
100 REM ***
101 REM *** Set Control Colors
102 REM ***
103 ALLCONTROLS,COLOR,BLACK,WHITE
104 REM ***

105 REM *** Load a Grid Control with Nammed cols and numbered rows.
106 REM ***
107 GRID1,GRID,4,18,72,4,10,6,NAMECOL,NUMROW
108 REM ***
109 REM *** Set Col headings and Widths of Cols.
110 GRID1,GRIDPARAM,Name,D.O.B,Breed,Class, Sex,Amount;;;26,10,15,5,3,6
111 REM ***
112 REM *** Load Data into Grid
113 REM ***
114 GRID1,GRIDSETVALUE,0,0,Lezand,Lezand,Lezand;21 Apr 92,21 Apr 92,21 Apr 92;

Dobermann,Dobermann,Dobermann;5,6,7;B,B,B;10.00,2.00,2.00
eoi:

The PIX.R.B.O.B Program

001 REM *** Example Program to Use most of the Controls availiable.
002 REM *** This program calls each Subroutine rather than using PIX.GUI.CONTROL.LOAD
003 REM *** Refer to previous example to see the same program using PIX.GUI.CONTROL.LOAD
004 REM ***
005 REM *** Author : Andy Hedgecock 23 Sept 1994
006 REM ***
007 REM ***
008 REM *** Set DEFGROUP for all Controls that follow.
009 REM *** Note: At present HOSTACCESS does not put Commands, Toolbars, Toolboxes & Menus
010 REM *** into the Group. This we hope to change in a later release.
011 REM ***
012 CALL PIX.GUI.LOAD.DEFGROUP("","DOG.CONTROLS","")
013 REM ***
014 CALL PIX.SET.COLOR('BLACK,WHITE','D') ;* Set colors of screen.
015 PRINT @(-1): ;* Clear Screen
016 REM ***
017 REM *** Set Sculpture Colors
018 REM ***
019 CALL PIX.SET.LINE.COLORS("BLACK,WHITE")
020 CALL PIX.SCULPTURE.MODE("ON","") ;* Turn Sculpture ON
021 REM
022 REM *** Set Control Colors
023 REM
024 CALL PIX.GUI.LOAD.COLOR("","ALLCONTROLS,COLOR,BLACK,LIGHTGRAY","")
025 REM ***
026 REM *** Load Each Command Control
027 REM ***
028 CALL PIX.GUI.LOAD.COMMAND("","COMM1,COMMAND,Command1,This is Command 1, \BITMAPS\ICON_BMP\

HALT.BMP","")
029 CALL PIX.GUI.LOAD.COMMAND("","COMM2,COMMAND,Command2,This is Command 2, \BITMAPS\ICON_BMP\

TYPE.BMP","")
030 CALL PIX.GUI.LOAD.COMMAND("","COMM3,COMMAND,Command3,This is Command 3, \BITMAPS\ICON_BMP\

TOOLS.BMP","")

031 CALL PIX.GUI.LOAD.COMMAND("","COMM4,COMMAND,Command4,This is Command 4, \BITMAPS\ICON_BMP\
SHUTDOOR.BMP","")

032 CALL PIX.GUI.LOAD.COMMAND("","COMM5,COMMAND,Command5,This is Command 5, \BITMAPS\ICON_BMP\
SHREEK.BMP","")

033 CALL PIX.GUI.LOAD.COMMAND("","COMM6,COMMAND,Command6,This is Command 6, \BITMAPS\ICON_BMP\
QUESTION.BMP","")

034 CALL PIX.GUI.LOAD.COMMAND("","COMM7,COMMAND,Command7,This is Command 7, \BITMAPS\ICON_BMP\
POSTBOX.BMP","")

035 CALL PIX.GUI.LOAD.COMMAND("","COMM8,COMMAND,Command8,This is Command 8, \BITMAPS\ICON_BMP\
PHONE.BMP","")

036 CALL PIX.GUI.LOAD.COMMAND("","COMM9,COMMAND,Command9,This is Command 9, \BITMAPS\ICON_BMP\
PAPER.BMP","")

037 CALL PIX.GUI.LOAD.COMMAND("","COMM10,COMMAND,Command10,This is Command 10, \BITMAPS\ICON_BMP\
OPENDOOR.BMP","")

038 REM ***
039 REM *** Load Commands into a TOOLBOX, TOOLBAR & MENU
040 REM ***
041 CALL PIX.GUI.LOAD.TOOLBOX("","FLOAT1,TOOLBOX,60,2,FLOATING TOOLBAR,COMM1,COMM2,

COMM3,COMM4,COMM5,COMM6","")
042 CALL PIX.GUI.LOAD.TOOLBAR("","BAR1,TOOLBAR,TITLE,COMM7,COMM8,COMM9,COMM10","")
043 CALL PIX.GUI.LOAD.MENU("","MENU1,MENU,EXAMPLES,COMM1,COMM2,COMM3,COMM4,COMM5,

COMM6,COMM7,COMM8,COMM9,COMM10","")
044 CALL PIX.GUI.MENU.INSTALL("","MENU,MENUINSTALL,MENU1","")
045 REM ***
046 REM *** Load Static Labels on Screen.
047 REM *** Note : The examples below use the Fixed font Helv10. For normal screens
048 REM *** these look good but when the screen is reduced to a small size the
049 REM *** font remains fixed and screen are corrupted.(BEWARE)
050 REM ***
051 REM ***
052 CALL PIX.GUI.LOAD.LABEL("" ,"LAB1,LABEL,1,2,6,1,Name : ,Helv10,Right","")
053 CALL PIX.GUI.LOAD.LABEL("" ,"LAB2,LABEL,1,4,6,1,Group : ,Helv10,Right","")
054 CALL PIX.GUI.LOAD.LABEL("" ,"LAB3,LABEL,1,10,6,1,Breed : ,Helv10,Right","")
055 CALL PIX.GUI.LOAD.LABEL("" ,"LAB4,LABEL,37,2,6,1,D.O.B : ,Helv10,Right","")
056 CALL PIX.GUI.LOAD.LABEL("" ,"LAB5,LABEL,25,4,6,1,Class : ,Helv10,Right","")
057 CALL PIX.GUI.LOAD.LABEL("" ,"LAB6,LABEL,25,13,6,1,Address :,Helv10,Right","")
058 REM ***
059 REM *** Load Textbutton Controls.
060 REM ***
061 CALL PIX.GUI.LOAD.TEXTBUTTON("" ,"FILE,TEXTBUTTON,65,2,9,2,&File,HELV10","")
062 CALL PIX.GUI.LOAD.TEXTBUTTON("" ,"CANCEL,TEXTBUTTON,65,5,9,2,Cancel","")
063 CALL PIX.GUI.LOAD.TEXTBUTTON("" ,"ADD,TEXTBUTTON,65,11,9,2,Add","")
064 REM ***
065 REM *** Load Pushbutton Controls.
066 REM ***
067 CALL PIX.GUI.LOAD.PUSHBUTTON("" ,"HELP,PUSHBUTTON,65,8,9,2,\bitmaps\f1help.bmp","")
068 REM ***
069 REM *** Load Image Controls.

070 REM ***
071 REM LOGO,IMAGE,0,0,15,4,\HOST\bitmaps\easy\easyacc.bmp
072 REM ***
073 REM *** Load String Lists for use within Lists, Combos ect.
074 REM ***
075 CALL PIX.GUI.LOAD.STRING("" ,"GROUP.LIST,STRING,Working,Gundogs,Hounds, Utility,Toys,Terriers","")
076 CALL PIX.GUI.LOAD.STRING("" ,"BREEDS.LIST,STRING,Alaskan Malamutes,Bearded Collies,Belgian Shepherd

Dogs,Boxers,Collies (Rough), Collies (Smooth),Dobermann,G.S.D,Rottweiler,Swedish Valhunds","")
077 CALL PIX.GUI.LOAD.STRING("" ,"CLASS.LIST,STRING,1.Minor

Puppy,2.Puppy,3.Novice,4.Junior,5.Graduate,6.Post Graduate,7.Limit,8.Open,9.Veteran","")
078 REM ***
079 REM *** Set Control Colors
080 REM ***
081 CALL PIX.GUI.LOAD.COLOR("" ,"ALLCONTROLS,COLOR,BLACK,WHITE","")
082 REM ***
083 REM *** Load Edit Controls.
084 REM ***
085 CALL PIX.GUI.LOAD.EDIT("" ,"NAME,EDIT,9,2,26,1,Lezand, HSCROLL,SCULPTURE","")
086 CALL PIX.GUI.LOAD.EDIT("" ,"D.O.B,EDIT,45,2,10,1,21 Apr 92,SCULPTURE","")
087 CALL PIX.GUI.LOAD.EDIT("" ,"ADDRESS,EDIT,33,13,25,3,,HSCROLL,VSCROLL,VSCROLLBAR,SCULPTURE","")
091 REM ***
092 REM *** Load Dropdown Combo containing the list "GROUP.LIST"
093 REM ***
094 CALL PIX.GUI.LOAD.DROPCOMB("" ,"GROUP,DROPCOMB,9,4,15,5,GROUP.LIST","")
095 REM ***
096 REM *** Load Simple Combo containing the list "BREEDS.LIST"
097 REM ***
098 CALL PIX.GUI.LOAD.SIMCOMB("" ,"BREED,SIMCOMB,9,10,15,6,BREEDS.LIST,BORDERON","")
099 REM ***
100 REM *** Load a Tabbed LIST control containing the list "CLASS.LIST"
101 REM ***
102 CALL PIX.GUI.LOAD.LIST("" ,"CLASS,LIST,33,4,25,6,CLASS.LIST,TABBED","")
103 REM ***
104 REM *** Set Control Colors
105 REM ***
106 CALL PIX.GUI.LOAD.COLOR("","ALLCONTROLS,COLOR,BLACK,LIGHTGRAY","")
107 REM ***
108 REM *** Load Radio Button Controls
109 REM ***
110 CALL PIX.GUI.LOAD.RADIOBUTTON("","DOG,RADIO,33,10,10,1,Dog, Helv10,LEFT,CHECK,SEX","")
111 CALL PIX.GUI.LOAD.RADIOBUTTON("","BITCH,RADIO,33,11,10,1,Bitch, Helv10,LEFT,SEX","")
112 REM ***
113 REM *** Load Check Button Controls
114 REM ***

115 CALL PIX.GUI.LOAD.CHECKBUTTON("","CAR,CHECK,47,10,10,1,Car Park,Helv10,LEFT","")
116 CALL PIX.GUI.LOAD.CHECKBUTTON("","CAT,CHECK,47,11,10,1,Catalogue,Helv10,LEFT","")
117 REM ***
118 REM *** Set Control Colors
119 REM ***
120 CALL PIX.GUI.LOAD.COLOR("" ,"ALLCONTROLS,COLOR,BLACK,WHITE","")
121 REM ***
122 REM *** Load a Grid Control with Nammed cols and numbered rows.
123 REM ***
124 CALL PIX.GUI.LOAD.GRID("","GRID1,GRID,4,18,72,4,10,6,NAMECOL,NUMROW","")
125 REM ***
126 REM *** Set Col headings and Widths of Cols.
127 PARAMS = ""
128 PARAMS<1> = "Name,D.O.B,Breed,Class,Sex,Amount"
129 PARAMS<4> = "26,10,15,5,3,6"
130 CALL PIX.GUI.GRID.SET.PARAM("","GRID1",PARAMS)
131 REM ***
132 REM *** Load Data into Grid
133 REM ***
134 DATA = ""
135 DATA<1> = "Lezand,Lezand,Lezand"
136 DATA<2> = "21 Apr 92,21 Apr 92,21 Apr 92"
137 DATA<3> = "Dobermann,Dobermann,Dobermann"
138 DATA<4> = "5,6,7"
139 DATA<5> = "B,B,B"
140 DATA<6> = "10.00,2.00,2.00"
141 CALL PIX.GUI.GRID.SET.VALUE("","GRID1",0,0,DATA)
142 REM ***
143 REM *** Wait for a keystroke
144 REM ***
145 PROMPT ""
146 INPUT XX:
147 REM ***
148 REM *** Unload all controls & clear Sculpture.
149 REM *** Note : Command, Toolbox, Toolbar & Menus can not be unloaded via group
150 REM *** This we hope to change in a later release.
151 REM ***
152 CALL PIX.GUI.CONTROL.UNLOAD("","COMM1","")
153 CALL PIX.GUI.CONTROL.UNLOAD("","COMM2","")
154 CALL PIX.GUI.CONTROL.UNLOAD("","COMM3","")
155 CALL PIX.GUI.CONTROL.UNLOAD("","COMM4","")
156 CALL PIX.GUI.CONTROL.UNLOAD("","COMM5","")
157 CALL PIX.GUI.CONTROL.UNLOAD("","COMM6","")
158 CALL PIX.GUI.CONTROL.UNLOAD("","COMM7","")

159 CALL PIX.GUI.CONTROL.UNLOAD("","COMM8","")
160 CALL PIX.GUI.CONTROL.UNLOAD("","COMM9","")
161 CALL PIX.GUI.CONTROL.UNLOAD("","COMM10","")
162 CALL PIX.GUI.CONTROL.UNLOAD("","FLOAT1","")
163 CALL PIX.GUI.CONTROL.UNLOAD("","BAR1","")
164 CALL PIX.GUI.CONTROL.UNLOAD("","MENU1","")
165 CALL PIX.GUI.CONTROL.UNLOAD("","DOG.CONTROLS","")
166 CALL PIX.SCULPTURE.MODE("OFF","")
167 REM ***
168 REM *** End of Program
169 REM ***
170 END
eoi

ORDER Program Example

001 PROMPT ""
002 GUI.APP.NAME = "ORDER"
003 GOSUB 1000;* and get control and screen formats
004 EQU TRUE TO 1, FALSE TO 0, OTHERWISE TO 1
005 CALL PIX.PUSH.SLOT ; CALL PIX.CURSOR("","OFF")
006 CALL PIX.SCULPTURE.MODE("ON","") ; CALL PIX.SET.COLOUR("BLACK,GREY","D")
007 PRINT @(-1):
008 CALL PIX.GUI.LOAD.SCREEN(SCREEN,"")
009 CALL PIX.GUI.CONTROL.LOAD(GUI.APP.NAME,CONTROLS,"","")
001 CALL PIX.GUI.CONTROL.EVENT(GUI.APP.NAME,CONTROL.EVENTS,"")
011 *
012 FIELD.VALUES = "";* This transaction
013 FINISHED=FALSE
014 CALL PIX.GUI.CONTROL.SET.FOCUS(GUI.APP.NAME,"USERS","")
015 *
016 LOOP UNTIL FINISHED DO
017 *
018 CALL PIX.GUI.GET.EVENT(GUI.APP.NAME,CONTROL.ID,EVENT.TYPE,PARAMS)
019 CALL PIX.GUI.CONTROL.UNLOAD(GUI.APP.NAME,"MOUSE","")
020 *
021 BEGIN CASE
022 CASE CONTROL.ID="SAVE"
023 FINISHED=1 ; GOSUB 100
024 CASE CONTROL.ID="CANCEL" OR PARAMS="CANCEL"
025 FINISHED=1
026 CASE INDEX("VISA,AMEX,DINERS,MCARD",CONTROL.ID,1)
027 PRINT @(54,7):CONTROL.ID "L#8": ; FIELD.VALUES<12>=CONTROL.ID
028 CASE CONTROL.ID = "EXCEL"
029 CALL PIX.GUI.CONTROL.READ.VALUE(GUI.APP.NAME,"USERS,EDIT",VALUE,"")
030 IF NUM(VALUE) AND VALUE # "" THEN
031 PRINT @(0,0):
032 CALL EXCEL(VALUE)
033 END
034 CASE CONTROL.ID = "ROOT"
035 IF EVENT.TYPE = "Q" THEN
036 FINISHED=1
037 END
038 CASE OTHERWISE
039 GOSUB 100;* validate fields if necessary
040 END CASE
041 *
042 REPEAT
043 *

044 CALL PIX.GUI.CONTROL.UNLOAD(GUI.APP.NAME,"ORDER","")
045 CALL PIX.SCULPTURE.MODE("OFF","C")
046 CALL PIX.POP.SLOT ; CALL PIX.CURSOR("LINE","ON")
047 *
048 IF CONTROL.ID = "SAVE" THEN
049 RECORD = FIELD.VALUES ;* more processing here
050 OPEN "ORDERS" TO ORDERS ELSE STOP
051 WRITE RECORD ON ORDERS,DATE():TIME()
052 END
053 *
054 STOP
055 *
056 1000* Build Control and Screen variables
057 *
058 OPEN "PIX.GUI.FORM.F" TO DBASE.FILE ELSE STOP
059 *
060 READ CONTROLS FROM DBASE.FILE,"ORDER.CONTROLS" ELSE STOP
061 READ SCREEN FROM DBASE.FILE,"ORDER.SCREEN" ELSE STOP
062 READ CONTROL.EVENTS FROM DBASE.FILE,"ORDER.EVENTS" ELSE STOP
063 RETURN ;* from 1000
064 *
065 100* Validate
066 *
067 *
068 * Call ORDER.VALIDATE to validate 1 or many (if finished)
069 CALL ORDER.VALIDATE(GUI.APP.NAME,CONTROL.ID,FINISHED,FIELD.VALUES)
070 *
071 RETURN ;* from 100
072 *
073 END

ORDER.CONTROLS for ORDER Example

ORDER.CONTROLS
ORDER,DEFGRP
ALLCONTROLS,COLOUR,BLACK,LIGHTGREY
CANCEL,TEXTBUTTON,60,21,9,2,&Cancel
SAVE,TEXTBUTTON,40,21,9,2,&Save
F1HELP,TEXTBUTTON,50,21,9,2,&Help
SIZE3,RADIO,10,4,9,1,3 1/2,RIGHT,CHECKED,SIZE
SIZE5,RADIO,20,4,9,1,5 1/4,RIGHT,SIZE
ASYNC,RADIO,10,5,9,1,ASYNC,RIGHT,TYPE
NET,RADIO,20,5,9,1,NET,RIGHT,CHECKED,TYPE
LOCAL,RADIO,10,7,9,1,Local,RIGHT,CHECKED,INSTALL
SERVER,RADIO,20,7,9,1,Server,RIGHT,INSTALL
WIN,RADIO,10,8,9,1,Windows,RIGHT,CHECKED,WINDOWS
DOS,RADIO,20,8,9,1,DOS,RIGHT,WINDOWS
VISA,PUSHBUTTON,45,4,11,3,BITMAPS\ORDER\VISA.BMP
AMEX,PUSHBUTTON,57,4,11,3,BITMAPS\ORDER\AMEX256.BMP
MCARD,PUSHBUTTON,45,8,11,3,BITMAPS\ORDER\MASTERCD.BMP
DINERS,PUSHBUTTON,57,8,11,3,BITMAPS\ORDER\DINERS.BMP
EXCEL,PUSHBUTTON,21,20,8,3,BITMAPS\ORDER\MSEXCEL.BMP
USERS,EDIT,20,10,5,1
COST,EDIT,20,12,10,1,0.00
CARDNO,EDIT,20,14,15,1,4929 933
CARDNAME,EDIT,20,16,15,1
CARDEXPIRY,EDIT,20,18,8,1
ADSTR,STRING,Spectrum,Pick World,News & Review,Dec User,
IBM today,Financial Times,PC World,Windows Magazine,Other User
ADVERT,DROPCOMB,50,12,18,6,ADSTR
ADVERT,COLOUR,BLACK,LIGHTWHITE
CARDADDR,EDIT,40,15,30,5,,VSCROLL,HSCROLL,VSCROLLBAR,MULTILINE
TITLE,LABEL,13,0,50,2,HOSTACCESS Telesales Order-II Processing,
CENTER,Times New Roman
TITLE,COLOUR,LIGHTRED,LIGHTGREY
LAB1,LABEL,8,10,10,1,# of Users,Times New Roman Bold Italic
LAB2,LABEL,8,12,10,1,Total Cost,Times New Roman Bold Italic
LAB3,LABEL,6,14,11,1,Card Number,Times New Roman Bold Italic
LAB4,LABEL,5,16,12,1,Name on Card,Times New Roman Bold Italic
LAB5,LABEL,5,18,11,1,Expiry Date,Times New Roman Bold Italic
LAB6,LABEL,40,12,9,1,Sales Ref,Times New Roman Bold Italic
LAB7,LABEL,40,14,20,1,Delivery/Card Address,Times New Roman
Bold Italic

ORDER.SCREEN for ORDER Example

ORDER.SCREEN
COLOUR,BLACK,GREY
SCOLOUR,BLACK,WHITE
SBOX,5,3,70,20
SLINE,37,3,20,V,GREY
SBOX,45,4,23,7
SBOX,10,4,20,5
SBOX,13,0,50,2,RAISED
SBOX,40,15,30,5
SBOX,20,10,5,1
SBOX,20,12,10,1
SBOX,20,14,15,1
SBOX,20,16,15,1
SBOX,20,18,8,1

ORDER.EVENTS for ORDER Example

ORDER.EVENTS
CANCEL,ON,CLICKED
SAVE,ON,CLICKED
AMEX,ON,CLICKED
DINERS,ON,CLICKED
VISA,ON,CLICKED
MCARD,ON,CLICKED
USERS,ON,ENTER,TAB
EXCEL,ON,CLICKED
CARDEXPIRY,ON,ENTER,TAB

HOSTACCESS Control Files

After you have installed the HOSTACCESS Host Programs on the host, several control and program files are created. This section
details each file, its usage and where necessary any record structures.

All HOSTACCESS ¢s files can be found in the Master Dictionary or VOC of the account in which you have installed the
HOSTACCESS Host Programs. These files have a naming convention to allow you to identify a HOSTACCESS specific file easily.
This convention is as follows:

PIX.filename.F

Where PIX. is the prefix and .F is the suffix. The HOSTACCESS specific files are summarized below :

File Name Description

PIX.CONTROL.F HOSTACCESS control file

PIX.EASY.ACCESS.F Used by the EASY.ACCESS application

PIX.DB.F Used by the DB application

PIX.PROGS.F Main HOSTACCESS programs file

PIX.TEXT.F Text used by each program

PIX.TRANSFER.F Used by HOSTACCESS ¢s File Transfer

PIX.OUTPUT.nn.F Used by the GET application where ¢nn ¢ is the port
number for any port that has used GET.

PIX.DEMO.F This is a demonstration file only. It is created by the
PIX.MAKE.DEMO.FILE program and contains
dummy data. If you review the TERMITE.DEMO
facility, you will notice that the EASY.ACCESS
demonstration uses this file.

PIX.GUI.FORM.F Used by the GUI demonstration programs to load the
controls, screens and events.

PIX.ORDERS.F Used by the ORDER demonstration program.

PIX.CONTACT.F Used by the CONTACT and CONTACT.GUI
programs.

PIX.STAFF.F and
PIX.STAFF.DEPT.F

Used by the STAFF.DEMO demonstration program.

You will also find ¢Q ¢ pointers to the same file names within any Account which you have updated with HOSTACCESS Update
Account procedure. These ¢Q ¢ pointers normally point back to the main HOSTACCESS host programs installation account.
PIX.OUTPUT.nn.F is always created locally within each account and should not be "Q" pointed to. The HOSTACCESS control files
are more fully detailed in the following sections.

File: PIX.CONTROL.F

This file contains many control records used by HOSTACCESS for a multitude of purposes. These records are described in their
functional groups. Control records that may be amended to suit your operating environment are also detailed here. Please make
sure that you keep copies of the original records before editing them.

Control Records for DB and EASY.ACCESS.
Control Records for the PASS.TO Routines.
Control Records for DOS.PICK and PICK.DOS Transfers
Control Records for Host Programs installation.
Control Record for Host Pick programs.

Control Records for DB and EASY.ACCESS

The following records are used by the HOSTACCESS applications DB and EASY.ACCESS respectively:

DB.TEXT.

EASY.ACCESS.TEXT.

DB.COMMANDS.

EASY.ACCESS.COMMANDS.

EASY.ACCESS.COMMANDS.HELP.

The ¢.TEXT ¢ records contain attributes of multi-values of text presented to the user as menu options where each attribute is a
separate menu. This text may be customized to meet user requirements. The ¢.COMMAND ¢ records are also attribute/multi-
valued and match the corresponding attributes/multi-values in the ¢.TEXT ¢ records. The ¢.HELP ¢ records follow the same
attribute/multi-value associations as the ¢.COMMAND ¢ records and are used to provide on-line help within the EASY.ACCESS
application. (note: this help is usually only available on those PICK systems, such as Prime INFORMATION, that support an on-line
HELP facility.)

You must ensure that you maintain the attribute/multi-value relationships when changing and moving options.

The basic rule is that you can delete, change and move most options within the same attribute (menu) but you cannot move options
from one attribute to another.

In most cases, you are unlikely to change the ¢.COMMAND ¢ records too much, other than deleting unrequired options or changing
verbs. Any other control COMMAND strings should NOT be changed in here since they are used by the programs to determine what
option you have selected.

You will also find more copies of each of the above records with the extensions ¢.UNIVERSE ¢ and ¢.PRIME ¢. These are the
records that are used when you are running on those systems. They have been provided to take into account additional commands
and verbs on those systems.

Control Records for the "PASS.TO" Routines

PASS.TO.SUPERCALC PASS.TO.SYMPHONY

PASS.TO.LOTUS PASS.TO.LOTUS.WINDOWS

PASS.TO.WORDPERFECT PASS.TO.WORDPEFECT.WINDOWS

PASS.TO.QUATTRO PASS.TO.QUATTRO.WINDOWS

PASS.TO.DOS PASS.TO.WORD

PASS.TO.EXCEL
Attributes 1 and 2

The first two attributes of these records are used by EASY.ACCESS when selecting to transfer data to a DOS or Windows package
from the ¢Pass to ¢ option. Attribute 1 is the text of the options available when calling the package. Attribute 2 is a list of the actual
command line option corresponding to the text. E.g. PASS.TO.LOTUS record attribute 1 contains the text option ¢Stacked ¢ Graph.
Attribute 2 contains a corresponding ¢S ¢ which is passed as an option when PASS.TO.LOTUS is called from EASY.ACCESS. The
¢text ¢ may be customized to suit user requirements.

Attribute 3 is more important. By default, it contains a single DOS or Windows command that will be used when calling the
corresponding DOS or Windows package. E.g. PASS.TO.LOTUS attribute 3 has ¢123 ¢ as the DOS command to call LOTUS. If all
of the PC ¢s running HOSTACCESS can run a DOS command 123 from any directory then this attribute need never be changed.

However, if some or all of your PCs call LOTUS differently, this attribute can be used to identify which DOS command to use on a
port by port basis. This is done by storing in the multi-value position (port number + 2), the relevant DOS command to call LOTUS
on that port ¢s PC. For example :

If attribute 3 contains :

123]]MY123]]CD\LOTUS;123

Port 1 will run MY123 to call LOTUS. Port 3 will change to directory LOTUS and run 123. All ports with a null multi-value (0, 2, 4 and
above) will call the default DOS command 123 held in the first multi-value.

Note: for network/LAN users, we recommend you set your PCs to all run the same DOS or Windows command to call the relevant
DOS package, as the port number may change each time you log in.

Attribute 4

This is used for PASS.TO.LOTUS and PASS.TO.WORDPERFECT. If you use multiple versions of these products, then specify the
version number (3 or 4 for LOTUS, or 5 or 6 for WORDPERFECT) in this attribute.

Control Records for DOS.PICK and PICK.DOS Transfers

nn.FT.LOG

This record contains the details of the last file transfer for port ¢nn ¢. This is mainly supported for backwards compatibility with
HOSTACCESS 2.0.

With HOSTACCESS 3.0, the file transfer programs can be called as subroutines and the details of the transfer are returned in a
separate variable.

Control Record for Host Programs Installation

PROGS.TO.COMPILE

This record contains a list of programs that would not compile during the Host Programs Installation process. Pixel would like to hear
from anyone who finds that this record is NOT empty. We have tested these programs on a massive range of PICK machines and
we want to ensure that we support all of our shipped programs on all platforms and PICK flavors.

Control Record for Host PICK Programs

ENVIRONMENT

This record is the main HOSTACCESS control record and has the following structure:

Attribute Function

001 Machine Type. (do not change)

002 HOSTACCESS account (do not change)

003 Reformat Type (do not change)

004 Item Size Limit.

005 System support for CHAR(255) (0
or 1).

Click here     for attribute descriptions,

Attribute Descriptions

Attributes 1,2 and 3 are used by HOSTACCESS programs and should not be modified. If the machine type in attribute 1 does not
match that for your system, you should re-install the HOSTACCESS host programs for your machine type into a clean account.

Attribute 4 is used mainly by HOSTACCESS ¢s file transfer upload programs. If the size of the DOS file being uploaded exceeds the
Item Size Limit held here, it is split into records of that size accordingly. Click here          for information on the format of these split
records. This value is normally set to 30000 bytes by default. Systems that are known to support unlimited item size will have this
value set to 5 megabytes. This value affects all users on the system.

Attribute 5, is used by the file transfer upload programs. If set to 1 (true), this tells HOSTACCESS that this system can print and
store the character value 255. Most generic PICK systems cannot support this character and therefore if it is found during any file
transfer upload it will be converted to a ¢tilde ¢. Without character 255 support, many DOS graphics files cannot be printed via the
DOS.VS virtual spooler routine. If you need to store files that contain a character 255 then you should look at both the ¢X ¢ and ¢T
¢ options on DOS.PICK and PICK.DOS file transfer routines.

If you are interested in storing DOS files that either contain a character 255 and/or your DOS files are too big for your PICK host
then you should see the ¢T ¢ option associated with PIX.DOS.PICK and PIX.PICK.DOS.

Note: If you wish to change attribute 5, ensure that your PICK system supports char(255).

Control Records for Menus and Selection Boxes

PIX.MENU.NAMES

PIX.SELECTION.BOX.NAMES

These records are used internally by the host "PIX." selection box and menu subroutines. These contain a multi-value list of a
names corresponding to a menu or selection box number to use for that name. These should not be changed.

File: PIX.EASY.ACCESS.F

This file is used by the EASY.ACCESS application and the PIX.EASY.ACCESS subroutine to store saved sentences. Normally this
file is local to the main HOSTACCESS account and any other accounts will point to it via a Q Pointer. However, if you prefer to store
saved sentences on an account by account basis, the Q Pointer can be deleted and a new file of the same name created in the
relevant account.

File: PIX.DB.F

This file is used by the DB application and the PIX.DB subroutine to store the current DB environment for each port.

File: PIX.PROGS.F

This file is the main HOSTACCESS programs and subroutines file. Most programs in this file are subroutines and SHOULD NOT be
run either directly from TCL or via the RUN command. Each of these programs is CATALOGed and should be called directly as a
PICK/BASIC subroutine CALL with the appropriate parameters.

File: PIX.TEXT.F

For each program and subroutine that HOSTACCESS uses, there is normally a corresponding record in this file. Most of the
important user text has been removed from each program and stored it in these records. This allows the text for the programs to be
customized to suit the user requirements.    All of the text in this file may be modified or translated into other languages, as required.

Since the DOS part of HOSTACCESS also has it ¢s text stored in a separate DOS file and can be modified to suit other languages,
HOSTACCESS really is an international product.

File: PIX.TRANSFER.F

This file is used by the File Transfer commands DOS.PICK and PICK.DOS and by the subroutines PIX.CALL.DOS.PICK,   
PIX.DOS.PICK, PIX.CALL.PICK.DOS and PIX.PICK.DOS:

1. To store DOS files that have been uploaded but exceed the ¢Item Size Limit ¢
and therefore cannot be stored in one PICK record. This limit is held in the
ENVIRONMENT record in the PIX.CONTROL.F file. Each large DOS file will be
split into smaller records with each record id in the format ¢FT.SPLIT.portno.n ¢
where portno is the port number that initiated the transfer. The ¢n ¢ will start at 1
and will be incremented each time the data is SPLIT.The application developer or
user must extract the data after it has been stored here. This is only a temporary
storage area since it will be overwritten the next time a large DOS file is uploaded
by this port.

2. When the ¢T ¢ option is used to upload DOS records using PIX.DOS.PICK,
those records are stored in HOSTACCESS ¢s file transfer ¢TRANSMIT ¢ format 
in this file. This overcomes any item size limitation or character 255 restriction for
storing DOS records on PICK. It also speeds up transfers, as HOSTACCESS
does not need to unpack/repack the protocol packets. Using the ¢T ¢ option on
PIX.PICK.DOS to send the record back results in the DOS file being created
exactly as it was when uploaded. This may include any DOS file from .exe to
spreadsheets.

Click here        for an example.

File: PIX.TRANSFER.F Example

An example format of a transmit record would be as follows:

itemname.1
itemname.2
itemname.3

and

itemname.HDR

where itemname is the name of the record passed to PIX.DOS.PICK at upload time. And where itemname.n denotes a split, if the
item is too big for the PICK system to store as one record. For each itemname uploaded there will be an associated .HDR record
with 4 attributes as follows:

001 Total bytes of the actual DOS file
002 Number of times itemname has been split
003 Time and date stamp when created
004 Port number who created the record

Format of Data Records

The actual transmit format data records are virtually in non user readable form. That is, they are the format of the protocol blocks
that HOSTACCESS ¢s file transfer uses. In this way, the blocks can be sent back very quickly without the overhead of rebuilding
them. These records should not be modified in any way, but can be deleted when and if they are no longer required.

You do not need to know how the format of these records are made up    -    when you specify to transfer ¢itemname ¢ back to DOS
using PIX.PICK.DOS and the ¢T ¢ option, HOSTACCESS brings together all of the split records and create the single correct DOS
record for you.

If the DOS record uploaded using the ¢T ¢ option is smaller than the maximum item size limit, then there will only be 2 records
created ; ¢itemname ¢ (no extension) and ¢itemname.HDR ¢.

File: PIX.OUTPUT.NN.F

This file is used by the GET command and the PIX.GET subroutine. There could be one file for each port number ¢nn ¢ that has
ever run GET. This file may be deleted if it is no longer required by that port. Most users will have no use for the detailed format of
this file. Any developers requiring program access to this file should contact their HOSTACCESS dealer or Pixel Innovations directly
for details of the file format.

The format of the output file is self-explanatory, except for the header record. This record is structured as follows:

Header Meaning

<1> Column Width

<2> No. of output dictionary

<3> No. of items listed

<4> Split into N chunks

<5> No. of display lines.

<6> No. of header lines

<7> Justification of each field

<8> Header of each field

<9> 1 = Date for each field
0 = No date.

